1
|
Yang W, Irwin A, Weerdenburg H, McWhinney B, Cole T, Lei A, Han B, Zhu X, Gwee A. Serum ganciclovir drug exposure in children receiving standard ganciclovir dosing. Antimicrob Agents Chemother 2024; 68:e0052524. [PMID: 39291998 PMCID: PMC11459965 DOI: 10.1128/aac.00525-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Intravenous ganciclovir (GCV) is used for the treatment of cytomegalovirus (CMV) infection in immunocompromised children. Although the therapeutic target for treatment is unclear, studies have shown a serum area under the concentration-time curve (AUC24h) ≥40 mg/L·h correlates with effective CMV prevention. This study aimed to externally validate existing GCV population pharmacokinetic (PopPK) models and develop a model if needed and evaluate the serum AUC24h achieved with standard GCV dosing and propose an optimized dosing strategy for immunocompromised children. Ganciclovir drug monitoring data from two pediatric hospitals were retrospectively collected, and published pediatric PopPK models were externally validated. The population AUC24h with standard GCV dosing (5 mg/kg twice daily) was calculated, and an optimized dosing strategy was determined using Monte Carlo simulations to achieve an AUC24h between 40 and 100 mg/L·h. Overall, 161 samples from 23 children with a median (range) age of 9.0 years (0.4-17.0) and weight of 28.2 kg (5.6-73.3) were analyzed. Transferability of published pediatric PopPK models was limited. Thus, a one-compartment model with first-order absorption and elimination with weight and serum creatinine as covariates was developed. The median (5th-95th percentiles) steady state AUC24h with standard dosing was 38.3 mg/L·h (24.8-329.2) with 13 children having an AUC24h <40 mg/L·h, particularly those aged <4 years (8/13). An optimized simulated GCV dosing regimen, ranging from 2 to 13 mg/kg twice daily for children with normal renal function, achieved 61%-78% probability of target attainment. Standard GCV dosing likely results in inadequate drug exposure in more than half of the children, particularly those aged <4 years. An optimized dosing regimen has been proposed for clinical validation.
Collapse
Affiliation(s)
- Wenyu Yang
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Adam Irwin
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, Queensland, Australia
| | - Heather Weerdenburg
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Antimicrobial Group, Murdoch Children’s Research Institute, Victoria, Australia
| | - Brett McWhinney
- Department of Chemical Pathology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Theresa Cole
- Department of Haematology, Royal Children’s Hospital, Melbourne, Melbourne, Victoria, Australia
| | - Alice Lei
- Department of General Medicine, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiao Zhu
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Amanda Gwee
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Antimicrobial Group, Murdoch Children’s Research Institute, Victoria, Australia
- Department of General Medicine, Royal Children’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Kocur A, Czajkowska A, Moczulski M, Kot B, Rubik J, Pawiński T. Assessment of Dried Serum Spots (DSS) and Volumetric-Absorptive Microsampling (VAMS) Techniques in Therapeutic Drug Monitoring of (Val)Ganciclovir-Comparative Study in Analytical and Clinical Practice. Int J Mol Sci 2024; 25:8760. [PMID: 39201447 PMCID: PMC11354252 DOI: 10.3390/ijms25168760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Ganciclovir (GCV) and its prodrug valganciclovir (VGCV) are antiviral medications primarily used to treat infections caused by cytomegalovirus (CMV), particularly in immunocompromised individuals such as solid organ transplant (SOT) recipients. Therapy with GCV is associated with significant side effects, including bone marrow suppression. Therefore, therapeutic drug monitoring (TDM) is mandatory for an appropriate balance between subtherapeutic and toxic drug levels. This study aimed to develop and validate three novel methods based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for GCV determination in serum (reference methodology), dried serum spots (DSS), and VAMS-Mitra™ devices. The methods were optimized and validated in the 0.1-25 mg/L calibration range. The obtained results fulfilled the EMA acceptance criteria for bioanalytical method validation. Assessment of DSS and VAMS techniques extended GCV stability to serum for up to a minimum of 49 days (at room temperature, with desiccant). Developed methods were effectively evaluated using 80 clinical serum samples from pediatric renal transplant recipients. Obtained samples were used for DSS, and dried serum VAMS samples were manually generated in the laboratory. The results of GCV determination using serum-, DSS- and VAMS-LC-MS/MS methods were compared using regression analysis and bias evaluation. The conducted statistical analysis confirmed the interchangeability between developed assays. The DSS and VAMS samples are more accessible and stable during storage, transport and shipment than classic serum samples.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Agnieszka Czajkowska
- Therapeutic Drug Monitoring, Clinical Pharmacokinetics and Toxicology Laboratory, Department of Clinical Biochemistry, The Children’s Memorial Health Institute in Warsaw, Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Mateusz Moczulski
- Student Scientific Association “Drug” in Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Bartłomiej Kot
- Student Scientific Association “Drug” in Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children’s Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Tomasz Pawiński
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
3
|
Li F, Cao D, Gu W, Li D, Liu Z, Cui L. Folate-Targeted Nanocarriers Co-Deliver Ganciclovir and miR-34a-5p for Combined Anti-KSHV Therapy. Int J Mol Sci 2024; 25:2932. [PMID: 38474177 DOI: 10.3390/ijms25052932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.
Collapse
Affiliation(s)
- Fangling Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832002, China
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Corner College and Cooper Roads (Building 75), Brisbane, QLD 4072, Australia
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Zhiyong Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Lin Cui
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832002, China
| |
Collapse
|
4
|
Penson PE, McCloskey AP. Therapeutic drug monitoring: applying the 'Goldilocks Principle' to clinical pharmacology. Expert Rev Clin Pharmacol 2023; 16:685-686. [PMID: 37496180 DOI: 10.1080/17512433.2023.2242161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/29/2022] [Indexed: 07/28/2023]
Affiliation(s)
- Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Alice P McCloskey
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| |
Collapse
|