1
|
Searle CL, Gutierrez SO, Ciubotariu II, López-Cruz A, Christie MR. Demographic rescue falters when pathogens are present. Ecology 2025; 106:e4495. [PMID: 39648926 DOI: 10.1002/ecy.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 12/10/2024]
Abstract
As natural populations continue to decline globally, direct forms of intervention are increasingly necessary to prevent extinction. One type of intervention, known as demographic rescue, occurs when individuals are added directly to a population to increase abundance and ultimately prevent population extinction. However, the role of infectious disease in demographic rescue remains unknown. To examine the effects of pathogens on demographic rescue, we used a host-pathogen system with the aquatic crustacean Daphnia dentifera as the host and the fungus Metschnikowia bicuspidata as the pathogen. We constructed a randomized 3 × 2 factorial experiment with three rescue treatments (none, low, high) and two pathogen treatments (unexposed, exposed), where the pathogen was introduced via infected individuals during rescue events. We found that adding more individuals to demographically depressed populations increased abundance over the short term; highly supplemented populations initially had 62% more individuals than populations that had no introduced individuals. However, by the end of the experiment, populations that did not have any individuals introduced averaged 640% higher abundance than populations where infected individuals had been added. Thus, the introduction of infected individuals can result in worse demographic outcomes for populations than if no rescue is attempted.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Stephanie O Gutierrez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alana López-Cruz
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Natural Sciences, University of Puerto Rico Aguadilla, Aguadilla, PO, Puerto Rico
- Department of Biology, University of Puerto Rico Rio Piedras, San Juan, PO, Puerto Rico
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Park KY, Lucas M, Chaulk A, Matter SF, Roland J, Keyghobadi N. Immigration allows population persistence and maintains genetic diversity despite an attempted experimental extinction. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240557. [PMID: 39086829 PMCID: PMC11288673 DOI: 10.1098/rsos.240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Widespread fragmentation and degradation of habitats make organisms increasingly vulnerable to declines in population size. Immigration is a key process potentially affecting the rescue and persistence of populations in the face of such pressures. Field research addressing severe demographic declines in the context of immigration among interconnected local populations is limited owing to difficulties in detecting such demographic events and the need for long-term monitoring of populations. In a 17-subpopulation metapopulation of the butterfly, Parnassius smintheus, all adults observed in two adjacent patches were removed over eight consecutive generations. Despite this severe and long-term reduction in survival and reproduction, the targeted populations did not go extinct. Here, we use genetic data to assess the role of immigration versus in situ reproduction in allowing the persistence of these populations. We genotyped 471 samples collected from the targeted populations throughout the removal experiment at 152 single nucleotide polymorphisms. We found no reduction in the genetic diversity of the targeted populations over time, but a decrease in the number of loci in Hardy-Weinberg equilibrium, consistent with a high level of immigration from multiple surrounding populations. Our results highlight the role of connectivity and movement in making metapopulations resilient to even severe and protracted localized population reductions.
Collapse
Affiliation(s)
- Keon Young Park
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Mel Lucas
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Andrew Chaulk
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
de Kemmeter JF, Byrne A, Dunne A, Carletti T, Asllani M. Emergence of power-law distributions in self-segregation reaction-diffusion processes. Phys Rev E 2024; 110:L012201. [PMID: 39160944 DOI: 10.1103/physreve.110.l012201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/21/2024]
Abstract
Many natural or human-made systems encompassing local reactions and diffusion processes exhibit spatially distributed patterns of some relevant dynamical variable. These interactions, through self-organization and critical phenomena, give rise to power-law distributions, where emergent patterns and structures become visible across vastly different scales. Recent observations reveal power-law distributions in the spatial organization of, e.g., tree clusters and forest patch sizes. Crucially, these patterns do not follow a spatially periodic order but rather a statistical one. Unlike the spatially periodic patterns elucidated by the Turing mechanism, the statistical order of these particular vegetation patterns suggests an incomplete understanding of the underlying mechanisms. Here, we present a self-segregation mechanism, driving the emergence of power-law scalings in pattern-forming systems. The model incorporates an Allee-logistic reaction term, responsible for the local growth, and a nonlinear diffusion process accounting for positive interactions and limited resources. According to a self-organized criticality (SOC) principle, after an initial decrease, the system mass reaches an analytically predictable threshold, beyond which it self-segregates into distinct clusters, due to local positive interactions that promote cooperation. Numerical investigations show that the distribution of cluster sizes obeys a power law with an exponential cutoff.
Collapse
Affiliation(s)
- Jean-François de Kemmeter
- Department of Mathematics and naXys, Namur Institute for Complex Systems, University of Namur, Rue Grafé 2, B5000 Namur, Belgium
- Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, Florida 32306, United States of America
| | | | | | | | | |
Collapse
|
4
|
Shade A. Microbiome rescue: directing resilience of environmental microbial communities. Curr Opin Microbiol 2023; 72:102263. [PMID: 36657335 DOI: 10.1016/j.mib.2022.102263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023]
Abstract
Earth's climate crisis threatens to disrupt ecosystem services and destabilize food security. Microbiome management will be a crucial component of a comprehensive strategy to maintain stable microbinal functions for ecosystems and plants in the face of climate change. Microbiome rescue is the directed, community-level recovery of microbial populations and functions lost after an environmental disturbance. Microbiome rescue aims to propel a resilience trajectory for community functions. Rescue can be achieved via demographic, functional, adaptive, or evolutionary recovery of disturbance-sensitive populations. Various ecological mechanisms support rescue, including dispersal, reactivation from dormancy, functional redundancy, plasticity, and diversification, and these mechanisms can interact. Notably, controlling microbial reactivation from dormancy is a potentially fruitful but underexplored target for rescue.
Collapse
Affiliation(s)
- Ashley Shade
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, École Centrale de Lyon, Ampère, UMR5005, 69134 Ecully cedex, France; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; The Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA; The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Barber-O'Malley B, Lassalle G, Chust G, Diaz E, O'Malley A, Paradinas Blázquez C, Pórtoles Marquina J, Lambert P. HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Crespo-Miguel R, Jarillo J, Cao-García FJ. Dispersal-induced resilience to stochastic environmental fluctuations in populations with Allee effect. Phys Rev E 2022; 105:014413. [PMID: 35193202 DOI: 10.1103/physreve.105.014413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many species are unsustainable at small population densities (Allee effect); i.e., below the so-called Allee threshold, the population decreases instead of growing. In a closed local population, environmental fluctuations always lead to extinction. Here, we show how, in spatially extended habitats, dispersal can lead to a sustainable population in a region, provided the amplitude of environmental fluctuations is below an extinction threshold. We have identified two types of sustainable populations: high-density and low-density populations (through a mean-field approximation, valid in the limit of large dispersal length). Our results show that patches where population is high, low, or extinct coexist when the population is close to global extinction (even for homogeneous habitats). The extinction threshold is maximum for characteristic dispersal distances much larger than the spatial scale of synchrony of environmental fluctuations. The extinction threshold increases proportionally to the square root of the dispersal rate and decreases with the Allee threshold. The low-population-density solution can allow understanding of difficulties in recovery after harvesting. This theoretical framework provides a unique approach to address other factors, such as habitat fragmentation or harvesting, impacting population resilience to environmental fluctuations.
Collapse
Affiliation(s)
- Rodrigo Crespo-Miguel
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain
| | - Javier Jarillo
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - Francisco J Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
7
|
Murphy SM, Adams JR, Waits LP, Cox JJ. Evaluating otter reintroduction outcomes using genetic spatial capture-recapture modified for dendritic networks. Ecol Evol 2021; 11:15047-15061. [PMID: 34765159 PMCID: PMC8571598 DOI: 10.1002/ece3.8187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture-recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23-0.28 otter/km, or 1 otter/3.57-4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83-104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12-1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8-10 years post-reintroduction, including 13-21% genetic diversity loss, 84%-87% genetic effective population size decline, and rapid divergence from the source population (F ST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non-invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts.
Collapse
Affiliation(s)
- Sean M. Murphy
- Wildlife Management DivisionNew Mexico Department of Game & FishSanta FeNew MexicoUSA
| | - Jennifer R. Adams
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | - John J. Cox
- Department of Forestry and Natural ResourcesUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
8
|
Huang CC, Wan JSH. A theorem for the invasion triangle and its applicability for invasion biology. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
|
10
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
11
|
Bélouard N, Paillisson J, Oger A, Besnard A, Petit EJ. Genetic drift during the spread phase of a biological invasion. Mol Ecol 2019; 28:4375-4387. [DOI: 10.1111/mec.15238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Nadège Bélouard
- UMR ECOBIO CNRS Université de Rennes 1 Rennes France
- UMR ESE Ecology and Ecosystem Health INRA, Agrocampus Ouest Rennes France
| | | | - Adrien Oger
- UMR ECOBIO CNRS Université de Rennes 1 Rennes France
| | - Anne‐Laure Besnard
- UMR ESE Ecology and Ecosystem Health INRA, Agrocampus Ouest Rennes France
| | - Eric J. Petit
- UMR ESE Ecology and Ecosystem Health INRA, Agrocampus Ouest Rennes France
| |
Collapse
|
12
|
Mestre A, Poulin R, Holt RD, Barfield M, Clamp JC, Fernandez-Leborans G, Mesquita-Joanes F. The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont. J Anim Ecol 2019; 88:1998-2010. [PMID: 31408529 DOI: 10.1111/1365-2656.13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/01/2019] [Accepted: 07/21/2019] [Indexed: 01/13/2023]
Abstract
The role of biotic interactions in shaping the distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host-mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hyper symbionts (symbionts of other symbionts). We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. Our empirical system is the epibiont ciliate Lagenophrys discoidea, which attaches to an ostracod that is itself ectosymbiotic on crayfish (the basal host). We applied multimodel selection and variance partitioning for GLMM to assess the relative importance of (a) traits of symbiotic hosts (ostracod sex and abundance), (b) traits of basal hosts (crayfish body weight, abundance and intermoult stage), (c) the abiotic environment (water chemistry and climate) and (d) geospatial autocorrelation patterns (capturing potential effects of crayfish dispersal among localities). Our models explained about half of the variation in prevalence and abundance of the hypersymbiont. Variation in prevalence was partly explained, in decreasing order of importance (18%-4%) by shared effects of symbiotic host traits and the abiotic environment, pure fixed effects of symbiotic hosts, abiotic environment and geospatial patterns (traits of basal hosts were not relevant). Hypersymbiont abundance was most strongly explained by random effects of host traits (mainly the symbiotic host), in addition to weaker fixed effects (mostly abiotic environment). Our results highlight the major role of the interplay between abundance of symbiotic hosts and water physico-chemistry in regulating populations of a hypersymbiotic ciliate, which is likely critical for dispersal dynamics, availability of attachment resources and suitability of on-host living conditions for the ciliate. We also found moderate signal of regulation by the basal host, for which we propose three mechanisms: (a) modulation of microhabitat suitability (crayfish-created water currents); (b) concentration of symbiotic hosts within crayfish; and (c) dispersal mediated by crayfish.
Collapse
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.,Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida
| | - John C Clamp
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | | | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Ingeman KE, Samhouri JF, Stier AC. Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science 2019; 363:363/6425/eaav1004. [DOI: 10.1126/science.aav1004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growing scientific awareness, strong regulations, and effective management have begun to fulfill the promise of recovery in the ocean. However, many efforts toward ocean recovery remain unsuccessful, in part because marine ecosystems and the human societies that depend upon them are constantly changing. Furthermore, recovery efforts are embedded in marine social-ecological systems where large-scale dynamics can inhibit recovery. We argue that the ways forward are to (i) rethink an inclusive definition of recovery that embraces a diversity of stakeholder perspectives about acceptable recovery goals and ecosystem outcomes; (ii) encourage research that enables anticipation of feasible recovery states and identifies pathways toward resilient ecosystems; and (iii) adopt policies that are sufficiently nimble to keep pace with rapid change and governance that works seamlessly from local to regional scales. Application of these principles can facilitate successful recoveries in a world where environmental conditions and social imperatives are constantly shifting.
Collapse
|
14
|
Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc Natl Acad Sci U S A 2017; 114:13501-13506. [PMID: 29183976 DOI: 10.1073/pnas.1712934114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colonization and expansion into novel landscapes determine the distribution and abundance of species in our rapidly changing ecosystems worldwide. Colonization events are crucibles for rapid evolution, but it is not known whether evolutionary changes arise mainly after successful colonization has occurred, or if evolution plays an immediate role, governing the growth and expansion speed of colonizing populations. There is evidence that spatial evolutionary processes can speed range expansion within a few generations because dispersal tendencies may evolve upwards at range edges. Additionally, rapid adaptation to a novel environment can increase population growth rates, which also promotes spread. However, the role of adaptive evolution and the relative contributions of spatial evolution and adaptation to expansion are unclear. Using a model system, red flour beetles (Tribolium castaneum), we either allowed or constrained evolution of populations colonizing a novel environment and measured population growth and spread. At the end of the experiment we assessed the fitness and dispersal tendency of individuals originating either from the core or edge of evolving populations or from nonevolving populations in a common garden. Within six generations, evolving populations grew three times larger and spread 46% faster than populations in which evolution was constrained. Increased size and expansion speed were strongly driven by adaptation, whereas spatial evolutionary processes acting on edge subpopulations contributed less. This experimental evidence demonstrates that rapid evolution drives both population growth and expansion speed and is thus crucial to consider for managing biological invasions and successfully introducing or reintroducing species for management and conservation.
Collapse
|
15
|
The influence of time since introduction on the population growth of introduced species and the consequences for management. POPUL ECOL 2017. [DOI: 10.1007/s10144-017-0581-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Berec L, Kramer AM, Bernhauerová V, Drake JM. Density-dependent selection on mate search and evolution of Allee effects. J Anim Ecol 2017; 87:24-35. [PMID: 28240356 DOI: 10.1111/1365-2656.12662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 01/18/2023]
Abstract
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value.
Collapse
Affiliation(s)
- Luděk Berec
- Department of Ecology, Institute of Entomology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Andrew M Kramer
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602-2202, USA
| | - Veronika Bernhauerová
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602-2202, USA
| |
Collapse
|
17
|
Luque GM, Vayssade C, Facon B, Guillemaud T, Courchamp F, Fauvergue X. The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere 2016. [DOI: 10.1002/ecs2.1413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gloria M. Luque
- Ecologie Systématique EvolutionUniv. Paris‐Sud CNRS AgroParisTech, Université Paris‐Saclay 91400 Orsay France
| | - Chloé Vayssade
- ISA UMR INRA CNRS Universite Nicé Côte d'Azur 06903 Sophia‐Antipolis France
| | - Benoît Facon
- CBGP UMR INRA CIRAD IRD SupAgro 34988 Montferrier sur Lez France
| | - Thomas Guillemaud
- ISA UMR INRA CNRS Universite Nicé Côte d'Azur 06903 Sophia‐Antipolis France
| | - Franck Courchamp
- Ecologie Systématique EvolutionUniv. Paris‐Sud CNRS AgroParisTech, Université Paris‐Saclay 91400 Orsay France
- Department of Ecology and Evolutionary BiologyCenter for Tropical ResearchInstitute of the Environment and SustainabilityUniversity of California Los Angeles Los Angeles California 90095 USA
| | - Xavier Fauvergue
- ISA UMR INRA CNRS Universite Nicé Côte d'Azur 06903 Sophia‐Antipolis France
| |
Collapse
|