1
|
Li M, Zhou R, Wang Y, Lu Y, Chu X, Dong C. Heterologous expression of frog antimicrobial peptide Odorranain-C1 in Pichia pastoris: Biological characteristics and its application in food preservation. J Biotechnol 2024; 390:50-61. [PMID: 38789049 DOI: 10.1016/j.jbiotec.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce food spoilage and deterioration caused by microbial contamination, antimicrobial peptides (AMPs) have gradually gained attention as a biological preservative. Odorranain-C1 is an α-helical cationic antimicrobial peptide extracted from the skin of frogs with broad-spectrum antimicrobial activity. In this study, we achieved the expression of Odorranain-C1 in Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) by employing DNA recombination technology. The recombinant Odorranain-C1 showed broad-spectrum antibacterial activity and displayed a minimum inhibitory concentration within the range of 8-12 μg.mL-1. Meanwhile, Odorranain-C1 exhibited superior stability and lower hemolytic activity. Mechanistically, Odorranain-C1 disrupted the bacterial membrane's integrity, ultimately causing membrane rupture and subsequent cell death. In tilapia fillets preservation, Odorranain-C1 inhibited the total colony growth and pH variations, while also reducing the production of total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA). In conclusion, these studies demonstrated the efficient recombinant expression of Odorranain-C1 in P. pastoris, highlighting its promising utilization in food preservation.
Collapse
Affiliation(s)
- Mengru Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruonan Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanyuan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Lu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Chunming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Wang Y, Wang J, Cai Z, Sang X, Deng W, Zeng L, Zhang J. Combined of plasma-activated water and dielectric barrier discharge atmospheric cold plasma treatment improves the characteristic flavor of Asian sea bass (Lates calcarifer) through facilitating lipid oxidation. Food Chem 2024; 443:138584. [PMID: 38306903 DOI: 10.1016/j.foodchem.2024.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
To explore the combination effects of plasma-activated water and dielectric barrier discharge (PAW-DBD) cold plasma treatment on the formation of volatile flavor and lipid oxidation in Asian sea bass (ASB), the volatile flavor compounds and lipid profiles were characterized by gas chromatography-ion mobility spectrometry and LC-MS-based lipidomics analyses. In total, 38 volatile flavor compound types were identified, and the PAW-DBD group showed the most kinds of volatile components with a significant (p < 0.05) higher content in aldehydes, ketones, and alcohols. A total of 1500 lipids was detected in lipidomics analysis, phosphatidylcholine was the most followed by triglyceride. The total saturated fatty acids content in PAW-DBD group increased by 105.02 μg/g, while the total content of unsaturated fatty acids decreased by 275.36 μg/g. It can be concluded that the PAW-DBD processing increased both the types and amounts of the volatile flavor in ASB and promoted lipid oxidation by altering lipid profiles.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China.
| |
Collapse
|
3
|
Suárez-Medina MD, Sáez-Casado MI, Martínez-Moya T, Rincón-Cervera MÁ. The Effect of Low Temperature Storage on the Lipid Quality of Fish, Either Alone or Combined with Alternative Preservation Technologies. Foods 2024; 13:1097. [PMID: 38611401 PMCID: PMC11011431 DOI: 10.3390/foods13071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Marine foods are highly perishable products due to their high content of polyunsaturated fatty acids, which can be readily oxidized to form peroxides and secondary oxidation products, thus conferring such foods undesirable organoleptic characteristics and generating harmful compounds that are detrimental to the health of consumers. The use of preservation methods that minimize lipid oxidation is required in the fishing and aquaculture industries. Low temperature storage (chilling or freezing) is one of the most commonly used preservation methods for fish and seafood, although it has been shown that the oxidation of the lipid fraction of such products is partially but not completely inhibited at low temperatures. The extent of lipid oxidation depends on the species and the storage temperature and time, among other factors. This paper reviews the effect of low temperature storage on the lipid quality of fish, either alone or in combination with other preservation techniques. The use of antioxidant additives, high hydrostatic pressure, irradiation, ozonation, ultrasounds, pulsed electric fields, and the design of novel packaging can help preserve chilled or frozen fish products, although further research is needed to develop more efficient fish preservation processes from an economic, nutritional, sensory, and sustainable standpoint.
Collapse
Affiliation(s)
- María Dolores Suárez-Medina
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - María Isabel Sáez-Casado
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Tomás Martínez-Moya
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
- Food Technology Division, University of Almería, 04120 Almería, Spain
| |
Collapse
|
4
|
Liu G, Li L, Song S, Ma Q, Wei Y, Liang M, Xu H. Marine Fish Oil Replacement with Lard or Basa Fish ( Pangasius bocourti) Offal Oil in the Diet of Tiger Puffer ( Takifugu rubripes): Effects on Growth Performance, Body Composition, and Flesh Quality. Animals (Basel) 2024; 14:997. [PMID: 38612236 PMCID: PMC11011091 DOI: 10.3390/ani14070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Lard (LD) and Basa fish offal oil (BFO) have similar fatty acid profiles, both containing high contents of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). The present study aimed to investigate the efficacy of partial or complete replacement of marine fish oil (MFO, herring oil) by LD or BFO in the diets of tiger puffer. The control diet contained 49.1% crude protein and 9.28% crude lipid content including 6% added MFO. In other diets, 1/3, 2/3, and 3/3 of the added MFO was replaced by LD or BFO, respectively. Each diet was fed to triplicate tanks of juvenile fish (initial body weight, 13.88 g). A 46-day feeding trial was conducted in a flow-through seawater system. Each diet was fed to triplicate 200-L rectangular polyethylene tanks, each of which was stocked with 30 fish. Fish were fed to satiation three times a day. The complete replacement of added MFO (replacing 65% of the total crude lipid) had no adverse effects on fish growth performance in terms of survival (>94%), weight gain (360-398%), feed intake (2.37-3.04%), feed conversion ratio (0.84-1.02), and somatic indices. The dietary LD or BFO supplementation also had marginal effects on fish body proximate composition, biochemical parameters, muscle texture, and water-holding ability, as well as the hepatic expression of lipid metabolism-related genes. Partial (2/3) replacement of added MFO by LD or BFO did not significantly reduce the muscle n-3 LC-PUFA content, indicating the n-3 LC-PUFA sparing effects of SFA and MUFA in LD and BFO. In general, dietary LD or BFO reduced the peroxidation level and led to significant changes in the muscle volatile flavor compound profile, which were probably attributed to the change in fatty acid composition. The results of this study evidenced that LD and BFO are good potential lipid sources for tiger puffer feeds.
Collapse
Affiliation(s)
- Guoxu Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 168 Wenhai Road, Qingdao 266237, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Lin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Shuqing Song
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 168 Wenhai Road, Qingdao 266237, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 168 Wenhai Road, Qingdao 266237, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. LC-MS-based lipidomics analyses of alterations in lipid profiles of Asian sea bass (Lates calcarifer) induced by plasma-activated water treatment. Food Res Int 2024; 177:113866. [PMID: 38225136 DOI: 10.1016/j.foodres.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 μg/g (raw ASB) to 1099.77 μg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 μg/g and 875.02 μg/g to 640.80 μg/g and 825.25 μg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
See MS, Musa N, Liew HJ, Harun NO, Rahmah S. Sweet orange peel waste as a feed additive in growth promoting and protective effect against Aeromonas hydrophila of juvenile bagrid catfish Mystus nemurus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119677. [PMID: 38042084 DOI: 10.1016/j.jenvman.2023.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.
Collapse
Affiliation(s)
- Ming She See
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Najiah Musa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Aquatic Health and Disease, Research Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nor Omaima Harun
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Sharifah Rahmah
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Aquatic Health and Disease, Research Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
8
|
EKİCİ A, ULUTAŞ OK, BERKKAN A. Head Space Single Drop Micro Extraction Gas Chromatography Flame Ionization Detection (HS-SDME-GC-FID) Method for the Analysis of Common Fatty Acids. Turk J Pharm Sci 2024; 20:397-404. [PMID: 38257845 PMCID: PMC10803924 DOI: 10.4274/tjps.galenos.2023.63494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023]
Abstract
Objectives Post-marketing/surveillance studies show that most of the many vegetable oils that are sold with health-promoting claims or statements with high nutritional values and are beneficial against diseases are off-limits of related monographs/criteria. Defining the oil with a fast, cheap, and efficient analytical method is needed to express fatty acids in any herbal product to authenticate, trace, specify, and classify the content.The majority of the after marketing/surveillance studies shows that most of the many vegetable oils that are sold with health-promoting claims or statements with high nutritional values and are beneficial against diseases are off-limits of related monographs/criteria. Defining the oil with fast, cheap and efficient analytical method to express fatty acids in any herbal product, to authenticate, trace, specify and classify the content is needed. Materials and Methods Here, we define a new simple tool with a headspace single drop microextraction (HS-SDME) method coupled with a gas chromatography-flame ionization detector (GC-FID) for the analysis of common fatty acids (FAs) in oils. Linolenic acid, γ-linolenic acid, and linoleic acid in olive oil, thyme oil, and fish oil were determined. Derivatization was performed with 0.2 mL of 2 mol/L KOH in methanol to transfer the FAs of oils into their methyl esters (FAMEs). Then, FAMEs were extracted using a head space single drop, which is 2.0 μL of sodium dodecyl sulfate:1-butanol (1:3, v/v) mixture. Results The most suitable extraction condition was that 360 μL of the FAMEs, 2.0 mL vial, 0.07 g NaCl as a salting-out effect, 45 °C extraction temperature, and 35 min extraction time. The precision of the method was below 12%, with accuracy validated by the GC-FID reference method.The most suitable extraction condition was that 360 μL of the fatty acid methyl esters (FAMEs), 2.0 mL vial, 0.07 g NaCl as a salting-out effect, 45 °C extraction temperature, and 35 min extraction time. The precision of the method was below 12% with an accuracy validated by the GC-FID reference method. Conclusion The HS-SDME can be used effectively for extracting FAs from oils for improved analysis of other FAs. The method is of direct importance and relevance for the herbal, pharmaceutical, and cosmetics industries.The HS-SDME can be used for effectively for extracting fatty acids from oils for improved analysis of other fatty acids while the method is direct importance and relevance for herbal, pharmaceutical, cosmetics industry.
Collapse
Affiliation(s)
- Aslıhan EKİCİ
- Gazi University, Health Sciences Institute, Department of Analytical Chemistry, Ankara, Türkiye
| | - Onur Kenan ULUTAŞ
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Türkiye
| | - Aysel BERKKAN
- Gazi University, Health Sciences Institute, Department of Analytical Chemistry, Ankara, Türkiye
| |
Collapse
|
9
|
Béland K, Rousseau C, Lair S. Diet-induced nephrocalcinosis in aquarium-raised juvenile spotted wolffish Anarhichas minor. DISEASES OF AQUATIC ORGANISMS 2024; 157:19-30. [PMID: 38236079 DOI: 10.3354/dao03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Wolffish are regularly housed in aquaria, but little data on their husbandry and health is available for caretakers. High occurrence rates of nephrocalcinosis and urolithiasis have been observed in Atlantic Anarhichas lupus and spotted A. minor wolffish housed at 2 Canadian zoological institutions. To explore the effect of diet on nephrocalcinosis and urolithiasis development, a 16 mo prospective study was conducted. A total of 32 juvenile spotted wolffish were randomly assigned to one of 4 experimental groups fed exclusively with the following diet: (1) Skretting® Europa 18 pellets; (2) Mazuri® LS Aquatic Carni-Blend Diet Formula; (3) vitamin-supplemented fish-based diet, and (4) vitamin-supplemented invertebrate-based diet. Urinalysis, radiographs, and complete necropsies were performed at the end of the study. None of the wolffish developed uroliths during the study period. All specimens fed with the fish-based and invertebrate-based diets developed nephrocalcinosis, whereas this condition was seen in 12.5 and 0% of the fish in the Skretting® and Mazuri® groups, respectively. Affected wolffish often presented with oxalate crystalluria and increased radiodensity of the posterior kidneys. Urinalysis and radiographic study were considered useful in the antemortem diagnosis of nephrocalcinosis. None of the previously published risk factors for the development of nephrocalcinosis in fish were supported by the results of this study. However, nutritional analyses of the 4 diets suggest that high dietary levels of gelatin or vitamin C or low levels of vitamin E could be potential risk factors for the development of nephrocalcinosis in spotted wolffish and thus warrant further study.
Collapse
Affiliation(s)
- Karine Béland
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec J2S 2M2, Canada
| | | | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec J2S 2M2, Canada
- Sépaq, Aquarium du Québec, Quebec City, Quebec G1W 4S3, Canada
| |
Collapse
|
10
|
Guan W, Liu T, Yan W, Cai L. The impact of ice slurry as a medium on oxidation status and flesh quality of shrimp (Litopenaeus vannamei) during refrigeration storage. J Food Sci 2023; 88:4918-4927. [PMID: 37905712 DOI: 10.1111/1750-3841.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
Oxidation of lipid and protein is a major reason of flesh quality deterioration during storage. In this work, cold storage (CS) and flake ice (FI) storage, as traditional strategies for live shrimp (Litopenaeus vannamei) sedation and refrigerated storage, showed remarkable oxidation damage of lipid and protein in shrimp flesh during storage. In contrast, ice slurry (IS), with good heat exchange capacity and contactability, stunned shrimp in a sudden and thus relieved antemortem stress, which resulted in reducing the reactive oxygen species and reactive nitrogen species accumulation, and the oxidation damage risk in flesh. Additionally, IS, as a storage medium acted an oxygen barrier, further inhibited the oxidation of lipid and myofibrillar protein (MP), as revealed by the lower thiobarbituric acid reactive substances level, carbonyl (CO) derives content, total disulfide bond (S-S) content, and the higher total sulfhydryl (SH) content in shrimp flesh during storage, compared with CS and FI. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis electrophoretogram pattern of MP also suggested better preservation of myosin heavy chain, myosin light chain, actin, and tropomyosin in IS, whereas these proteins degraded in CS and FI. Consequently, IS prevented the formation of cross-linking caused by oxidation in MP, leading to improved shrimp flesh quality during refrigerated storage, as demonstrated by the better maintained hardness, springiness, and water-holding capacity compared to CS and FI.
Collapse
Affiliation(s)
- Weiliang Guan
- Department of Food Science, Guangxi University, Nanning, Guangxi, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Tianyu Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Weibing Yan
- Zhejiang Hongye Equipment Technology Co., Ltd., Taizhou, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Zhou Y, Xiong Y, He X, Xue X, Tang G, Mei J. Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish ( Pelteobagrus fulvidraco). Metabolites 2023; 13:1137. [PMID: 37999233 PMCID: PMC10672940 DOI: 10.3390/metabo13111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Fat deposition and off-flavor in the muscle are the main problems affecting flesh quality in aquaculture fish, especially in catfish, leading to low acceptability and reduced market price. Yellow catfish is an important aquaculture fish in China. In this study, 40 days of depuration and starvation treatment were explored to improve the muscle quality of aquaculture yellow catfish. After depuration and starvation, the body weight, condition factor (CF) and mesenteric fat index (MFI) were all significantly decreased 20 days after treatment. The metabolomic profiles in muscle were characterized to analyze the muscle quality in yellow catfish. The results showed that the content of ADP, AMP, IMP, glutamic acid and taurine were significantly increased between 20 and 40 days post-treatment in the muscle of yellow catfish during the treatment, which was positively associated with the flesh tenderness and quality. In contrast, aldehydes and ketones associated with off-flavors and corticosterone associated with bitter taste were all decreased at 20 days post-treatment. Considering the balance of body weight loss and flesh quality improvement, depuration and starvation for around 20 days is suitable for aquaculture yellow catfish. Our study not only provides an effective method to improve the flesh quality of aquaculture yellow catfish but also reveals the potential mechanism in this process.
Collapse
Affiliation(s)
- Ya Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xianlin He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Xiaoshu Xue
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Guo Tang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
12
|
Tian HH, Huang XH, Qin L. Insights into application progress of seafood processing technologies and their implications on flavor: a review. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 37788446 DOI: 10.1080/10408398.2023.2263893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.
Collapse
Affiliation(s)
- He-He Tian
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lei Qin
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
13
|
Hands JM, Anderson ML, Cooperman T, Frame LA. A Multi-Year Rancidity Analysis of 72 Marine and Microalgal Oil Omega-3 Supplements. J Diet Suppl 2023; 21:195-206. [PMID: 37712532 DOI: 10.1080/19390211.2023.2252064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
There exists significant heterogeneity in the 'freshness' of consumer marine- and plant-derived omega-3 (Ω3) supplements. Fears of rancidity, or the oxidation of consumer Ω3 supplements, has been debated in the literature with several prior authors reporting contradictory findings. We report the peroxide value (PV), para-anisidine value (p-AV) and total oxidation values (TOTOX) associated with 72 consumer Ω3 supplements sold in the United States sampled from 2014-2020. The effect of flavoring on the oxidation of the supplements was examined in an adjusted fixed effects model controlling for type of delivery system (enteric, liquid, animal- and vegetable-derived gelatin softgel, spray), source (algae, calamari, fish, krill, mussels), and certifications assigned by third-party organizations (e.g. USP). Overall, our results revealed that 68% (23/34) of flavored and 13% (5/38) unflavored consumer Ω3 supplements exceeded the TOTOX upper limit set by the Global Organization for EPA and DHA (GOED) voluntary monograph standard of ≤ 26, with 65% (22/34) flavored supplements and 32% (12/38) unflavored supplements failing the PV upper limit of ≤ 5 and 62% (21/34) flavored supplements exceeding the p-AV upper limit of ≤ 20. To our knowledge, no prior authors have modeled the impact of flavoring on oxidative status in 72 marine- and plant-derived Ω3 products sold in the U.S. We present our findings in this context and discuss the clinical implications related to the consumption of oxidized consumer fish oils and their effects on human health.
Collapse
Affiliation(s)
- Jacob M Hands
- The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | | | | | - Leigh A Frame
- Integrative Medicine, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
- Resiliency & Well-being Center, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Fang MC, Chin PSY, Sung WC, Chen TY. Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying. Molecules 2023; 28:molecules28114376. [PMID: 37298852 DOI: 10.3390/molecules28114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to investigate the physicochemical characteristics and volatile flavor of fried tilapia skins under three frying methods. Conventional deep-fat frying usually increases the oil content of the fried fish skin and leads to lipid oxidation, which reduces the product quality. Alternative frying methods, such as air frying for 6 and 12 min under 180 °C (AF6, and AF12) and vacuum frying at 0.085 MPa for 8 and 24 min under 120 °C (VF8, and VF24) were compared to conventional frying for 2 and 8 min under 180 °C (CF2, and CF8) for tilapia skin. Physical properties of fried skin, such as the moisture content, water activity, L* values and breaking force decreased under all frying methods, while the lipid oxidation and a*, b* values increased with the increase in frying time. In general, VF offered higher hardness of product compared to AF which had a lower breaking force. Especially AF12 and CF8 had the lowest breaking force, which indicated higher crispness. For the oil quality inside the product, AF and VF reduced conjugated dienes formation and retarded oxidation compared to CF. The results of the flavor compositions of fish skin measured using gas chromatography mass spectrometry (GC/MS) with solid phase microextraction (SPME) showed that CF obtained higher unpleasant oily odor (nonanal, 2,4-decadienal, etc.), while AF presented greater grilling flavor (pyrazine derivatives). Because fish skin fried by AF only relied on hot air, Maillard reaction derived compounds, such as methylpyrazine, 2,5-dimethylpyrazine, and benzaldehyde were the leading flavors. This made the aroma profiles of AF very different from VF and CF. Among all the approaches, AF and VF developed lower oil content, mild fat oxidation and better flavor attributes, which proves their practical applications for frying tilapia fish skin.
Collapse
Affiliation(s)
- Ming-Chih Fang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Peng-Shih-Yun Chin
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
16
|
Transcriptome analysis reveals the potential mechanism of carotenoids change in hepatopancreas under low-temperature storage from swimming crab (Portunus trituberculatus). Food Chem 2023; 408:135241. [PMID: 36549153 DOI: 10.1016/j.foodchem.2022.135241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The hepatopancreas of swimming crab (Portunus trituberculatus) rich in carotenoids would undergo serious color deterioration during cold storage, and then made portunid lose its commodity value. In this study, we firstly elucidated the change mechanism of its carotenoids during storage at the molecular level using transcriptome technology. We concluded that low-temperature would inhibit aerobic respiration of portunid, leading to a lower pH and inducing the degradation of carotenoids. After that, longer cold storage time would increase the oxidative stress in portunid, resulting in a further decrease in carotenoids content. Finally, the strong autolysis of portunid could release carotenoids stored in other parts such as ovary to the external environment, resulting in the increase of carotenoids detection content. This research could provide a basis for further developing the fresh-keeping technology of portunid during low-temperature storage.
Collapse
|
17
|
Anders N, Breen M, Skåra T, Roth B, Sone I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem 2023; 405:134819. [PMID: 36403466 DOI: 10.1016/j.foodchem.2022.134819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Crowded (stressed) and unstressed Atlantic mackerel with or without pre-freezing holding in refrigerated sea water (RSW) were stored at -19 °C for ∼12 months and analysed for nucleotide degradation (K value), muscle pH, water holding capacity (WHC), fillet firmness, cathepsin B/L like activity, lipid oxidation and fillet colour. The frozen storage showed the largest and most consistent direct effects on the quality metrics leading to increased lipid oxidation, discolouration (yellowing) and reduction on WHC and cathepsin activity. RSW treatment promoted nucleotide degradation and reduced WHC and fillet firmness in interaction with frozen storage and affected fillet colour lightness and saturation. Although showing only marginal main effects, crowding stress modified WHC, cathepsin activity and fillet firmness and colour through significant interactions with the frozen storage and RSW treatment. Further studies with larger sample sizes would be needed to elucidate their complex effects and interactions on the quality and storage stability of mackerel.
Collapse
Affiliation(s)
- Neil Anders
- Institute of Marine Research, Bergen. P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway.
| | - Michael Breen
- Institute of Marine Research, Bergen. P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway.
| | - Torstein Skåra
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| | - Bjørn Roth
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| | - Izumi Sone
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway.
| |
Collapse
|
18
|
Dash P, Siva C, Tandel RS, Bhat RAH, Gargotra P, Chadha NK, Pandey PK. Temperature alters the oxidative and metabolic biomarkers and expression of environmental stress-related genes in chocolate mahseer (Neolissochilus hexagonolepis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43203-43214. [PMID: 36650370 DOI: 10.1007/s11356-023-25325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Long-term acclimation temperature effects on biomarkers of oxidative stress, metabolic stress, expression of heat shock proteins (Hsps), and warm-temperature acclimation related 65-kDa protein (Wap65) were evaluated in the threatened chocolate mahseer (Neolissochilus hexagonolepis). Fifteen-day-old larvae were acclimated to different water temperatures (15, 19, 23-control group, 27, and 31 °C) for 60 days prior to the sampling for quantification of mRNA, enzyme, nitric oxide, and malondialdehyde (MDA) content. Acclimation to 31 °C increased the basal mRNA level of glutathione S-transferase alpha 1 (GSTa1), and activities of catalase (CAT), glutathione reductase (GR), and GST enzymes and but downregulated the expression of superoxide dismutase 1 (SOD1) in the whole-body homogenate. Other antioxidant genes, i.e., CAT and GPx1a, were unaffected at 31 °C, and nitric oxide (NO) concentration was significantly lower. In contrast, fish acclimated to 15 °C showed an upregulated transcript level of all the antioxidant genes and no significant difference in the CAT, GR, and GST enzymes. Activities of the metabolic enzymes, aspartate transaminase (AST) and alanine transaminase (ALT), were significantly lower at 15 °C. The expression of Hsp47 was upregulated at both 15 and 31 °C groups, whereas Hsp70 was elevated at 27 and 31 °C groups. Wap65-1 transcription did not show significant variation in treatment groups compared to control. Fish in the high (31 °C) and low-temperature (15 °C) acclimation groups were capable of maintaining oxidative stress by modulating their antioxidant transcripts, enzymes, and Hsps.
Collapse
Affiliation(s)
- Pragyan Dash
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India.
| | - C Siva
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Ritesh Shantilal Tandel
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Raja Aadil Hussain Bhat
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Pankaj Gargotra
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education, Panch Marg, Versova, Andheri West, Maharastra, 400061, India
| | - Pramod Kumar Pandey
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| |
Collapse
|
19
|
Chanioti S, Giannoglou M, Stergiou P, Passaras D, Dimitrakellis P, Kokkoris G, Gogolides E, Katsaros G. Plasma-activated water for disinfection and quality retention of sea bream fillets: Kinetic evaluation and process optimization. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
20
|
Abedi-Firoozjah R, Salim SA, Hasanvand S, Assadpour E, Azizi-Lalabadi M, Prieto MA, Jafari SM. Application of smart packaging for seafood: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1438-1461. [PMID: 36717376 DOI: 10.1111/1541-4337.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Nowadays, due to the changes in lifestyle and great interest of consumers in a healthy life, people have started increasing their seafood consumption. But due to their short shelf life, experts are looking for a new packaging called smart packaging (SMP) for seafood. There are different indicators/sensors in SMP; one of the effective indices is time-temperature, which can show consumers the best time of using seafood based on their shelf life and experienced temperature. Another one is radio-frequency identification (RFID) that is a transmission device that represents a separate form of the electronic information-based SMP systems. RFID does not belong to any of the categories of markers or sensors; it is an auto recognition system that applies cordless sensors to indicate segments and collect real-time information without manual interposition. This review covers the use of SMP in all marine foods, including fish, due to its high consumption and high content of polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3), which are the considerable factors of n-3 polyunsaturated fatty acids for human.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamimeh Azimi Salim
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Influence of Fish Handling Practices Onboard Purse Seiners on Quality Parameters of Sardines ( Sardina pilchardus) during Cold Storage. Biomolecules 2023; 13:biom13020192. [PMID: 36830560 PMCID: PMC9953280 DOI: 10.3390/biom13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Small pelagic fish are a rich source of high-quality proteins and omega-3 fatty acids, but they are highly perishable due to the activity of microorganisms, endogenous enzymes, and oxidation processes that affect their muscle tissues during storage. This study focused on analyzing the influence of fish handling practices onboard vessels on sensory quality attributes, pH, water holding capacity, TVB-N, proteolytic changes, and lipid oxidation in sardine muscle tissue during cold storage. Experiments were conducted onboard fishing vessels during regular work hours, with added consistency, accounting for similar sardine sizes (physiological and reproductive stages) under similar environmental conditions. Traditional handling practices, e.g., boarding the catch with brail nets and transporting the fish in plastic crates with flake ice, were compared with the use of modified aquaculture pumps for boarding the catch and transporting it in isothermic boxes submerged in ice slurry. Results confirmed significant differences in the parameters among the different fishing vessels, although no significant differences were found between the two methods of fish handling on board the vessels. The study also confirmed a higher rate of lipid oxidation in fish muscle due to physical damage and an increased degree of proteolysis in samples with lower muscle pH values.
Collapse
|
22
|
Boutheina B, Leila K, Besbes N, Messina C, Santulli A, Saloua S. Evaluation of the qualitative properties and consumer perception of marinated sardine Sardina pilchardus: The effect of fucoxanthin addition. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Pachekrepapol U, Thangrattana M, Kitikangsadan A. Impact of oyster mushroom (Pleurotus ostreatus) on chemical, physical, microbiological and sensory characteristics of fish burger prepared from salmon and striped catfish filleting by-product. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Esaiassen M, Jensen TK, Eilertsen VT, Larsen RB, Olsen SH, Tobiassen T. The Effect of Buffer Towing on Quality Aspects of Frozen and Thawed Atlantic Cod (Gadus Morhua). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2146555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Margrethe Esaiassen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Seafood industry, Nofima AS, Tromsø, Norway
| | - Tonje K. Jensen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Venil T. Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roger B. Larsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | |
Collapse
|
25
|
Wei Q, Mei J, Xie J. Application of electron beam irradiation as a non-thermal technology in seafood preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Evaluation of chemical components of herbs and spices from Thailand and effect on lipid oxidation of fish during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Albahr Z, Al-Ghamdi S, Tang J, Sablani SS. Pressure-Assisted Thermal Sterilization and Storage Stability of Avocado Puree in High Barrier Polymeric Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Nanoemulsified clove essential oils-based edible coating controls Pseudomonas spp.-causing spoilage of tilapia (Oreochromis niloticus) fillets: Working mechanism and bacteria metabolic responses. Food Res Int 2022; 159:111594. [DOI: 10.1016/j.foodres.2022.111594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
29
|
Aracati MF, Rodrigues LF, de Oliveira SL, Rodrigues RA, Conde G, Cavalcanti ENF, Borba H, Charlie-Silva I, Fernandes DC, Eto SF, de Andrade Belo MA. Astaxanthin improves the shelf-life of tilapia fillets stored under refrigeration. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4287-4295. [PMID: 35038166 DOI: 10.1002/jsfa.11780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astaxanthin, classified as a xanthophyll, has antioxidant properties about 500 times greater than α-tocopherols and ten times greater than β-carotenes. Based on the antioxidant activity of this carotenoid, this study aimed to evaluate the shelf-life of tilapia fillets (Oreochromis niloticus) fed with astaxanthin, by determining the microbiological quality (colimetry, counts of mesophilic and psychrotrophic microorganisms), physicochemical analyses (colorimetry, pH, thiobarbituric acid reactive substances (TBARS)) and sensory analysis. RESULTS Tilapia supplemented with astaxanthin presented a reduction in the counts of microorganisms (mesophiles and psychrotrophics) and lower lipid oxidation index (TBARS), when compared to fillets of control fish. Colorimetric changes of fillet degradation were observed, associated with increased pH during storage, as well as loss of brightness and texture in addition to worsening of appearance and odor. These deteriorating changes were minimized using astaxanthin. CONCLUSION Our results demonstrate the beneficial performance of astaxanthin in the shelf-life of tilapia fillets stored under refrigeration. Therefore, dietary supplementation with astaxanthin (100 and 200 mg kg-1 of feed) improves the microbiological and physicochemical quality of tilapia fillets during 50 days of shelf-life. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayumi Fernanda Aracati
- Department of Preventive Veterinary Medicine, Sao Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | - Romário Alves Rodrigues
- Department of Preventive Veterinary Medicine, Sao Paulo State University (Unesp), Jaboticabal, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, Sao Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Hirasilva Borba
- Department of Preventive Veterinary Medicine, Sao Paulo State University (Unesp), Jaboticabal, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo-ICB/USP, São Paulo, Brazil
| | | | - Silas Fernandes Eto
- Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, Sao Paulo State University (Unesp), Jaboticabal, Brazil
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil
| |
Collapse
|
30
|
Volff V, de Almeida Rosa Kurosaki JK, Retcheski MC, Maximovski LV, Soares Escorsin KJ, Tormen L, Romão S, Pinto VZ, Bergler Bitencourt T, Cazarolli LH. In Vivo Yarrowia lipolytica Fermented Biomass Feed Supplementation for Shrimp and Its Effects Upon Frozen Meat Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | | | | | | | | | - Luciano Tormen
- Federal University of Fronteira Sul, Laranjeiras do Sul, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Brazil
| | | | | | | |
Collapse
|
31
|
García MR, Ferez-Rubio JA, Vilas C. Assessment and Prediction of Fish Freshness Using Mathematical Modelling: A Review. Foods 2022; 11:foods11152312. [PMID: 35954077 PMCID: PMC9368035 DOI: 10.3390/foods11152312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Fish freshness can be considered as the combination of different nutritional and organoleptic attributes that rapidly deteriorate after fish capture, i.e., during processing (cutting, gutting, packaging), storage, transport, distribution, and retail. The rate at which this degradation occurs is affected by several stress variables such as temperature, water activity, or pH, among others. The food industry is aware that fish freshness is a key feature influencing consumers’ willingness to pay for the product. Therefore, tools that allow rapid and reliable assessment and prediction of the attributes related to freshness are gaining relevance. The main objective of this work is to provide a comprehensive review of the mathematical models used to describe and predict the changes in the key quality indicators in fresh fish and shellfish during storage. The work also briefly describes such indicators, discusses the most relevant stress factors affecting the quality of fresh fish, and presents a bibliometric analysis of the results obtained from a systematic literature search on the subject.
Collapse
Affiliation(s)
- Míriam R. García
- Research Group on Biosystems and Bioprocess Engineering (Bio2eng), IIM-CSIC, 36208 Vigo, Spain; (M.R.G.); (J.A.F.-R.)
| | - Jose Antonio Ferez-Rubio
- Research Group on Biosystems and Bioprocess Engineering (Bio2eng), IIM-CSIC, 36208 Vigo, Spain; (M.R.G.); (J.A.F.-R.)
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, 30100 Murcia, Spain
| | - Carlos Vilas
- Research Group on Biosystems and Bioprocess Engineering (Bio2eng), IIM-CSIC, 36208 Vigo, Spain; (M.R.G.); (J.A.F.-R.)
- Correspondence:
| |
Collapse
|
32
|
Edible Xanthan/Propolis Coating and Its Effect on Physicochemical, Microbial, and Sensory Quality Indices in Mackerel Tuna ( Euthynnus affinis) Fillets during Chilled Storage. Gels 2022; 8:gels8070405. [PMID: 35877490 PMCID: PMC9315731 DOI: 10.3390/gels8070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.
Collapse
|
33
|
Ditudompo S, Rungchang S, Pachekrepapol U. Quality changes and experimental accelerated shelf‐life determination of ready‐to‐eat burgers made from striped catfish and salmon mince blend by thermal processing in retort pouches. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Srivikorn Ditudompo
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Saowaluk Rungchang
- Department of Agro‐Industry, Faculty of Agriculture, Natural Resources and Environment Naresuan University Phitsanulok Thailand
| | - Ulisa Pachekrepapol
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| |
Collapse
|
34
|
Oteri M, Chiofalo B, Maricchiolo G, Toscano G, Nalbone L, Lo Presti V, Di Rosa AR. Black Soldier Fly Larvae Meal in the Diet of Gilthead Sea Bream: Effect on Chemical and Microbiological Quality of Filets. Front Nutr 2022; 9:896552. [PMID: 35685870 PMCID: PMC9172839 DOI: 10.3389/fnut.2022.896552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The chemical and microbiological characteristics of filets of Spaurus aurata L. specimens fed with diets containing a Hermetia illucens meal (HIM) at the 25, 35, and 50%, as a partial replacement for fish meal (FM) were evaluated. The diets, formulated to satisfy the nutritional needs of fish, were isoenergetic (22 MJ/kg gross energy), isonitrogenous (43 g/100 g, a.f.), and isolipidic (19 g/100 g, a.f.). Seventy-two specimens were randomly killed after 186 days of growing trials. Then, the filets were analyzed for chemical profile, fatty acids, amino acids, minerals, and microbial flora. Data were subjected to statistical analysis. No significant differences were observed in chemical composition. The sum of polyunsaturated fatty acids (PUFAs) showed a similar content in the filets; eicosapentaenoic acid was similar in the filets of HIM0, HIM35%, and HIM50%, whereas docosahexaenoic acid was higher in filets of the HIM0 group. n3/n6 PUFA ratio and the sum of EPA + DHA showed a high value (p < 0.001) in filets of the group fed with FM. No significant difference was observed in thrombogenic index and hypocholesterolaemic/hypercholesterolaemic ratio in the groups; the atherogenic index showed a higher value (p = 0.001) in the HIM50% group. Indispensable amino acids showed some significant (p < 0.0001) differences in the groups; arginine and phenylalanine content was higher in the filets of fish fed with FM; isoleucine and valine content was higher in the filets of HIM50%; leucine, lysine and methionine content was lower in the filets of HIM35%; histidine content was lower in the filets of HIM25%; tryptophan content was lower in filets of the HIM50% group. EAA/NEAA ratio showed highest value in the filets of the group that received FM. The presence of HIM in the three diets kept chromium, manganese, iron, copper, zinc, and nickel levels lower than those recommended by various authorities. Ca/P ratio showed a higher level (p < 0.0001) in the group fed with FM than those fed with diets containing HIM. The insect meal in the diets did not influence the microbiological profile of fish. Use of HIM as an unconventional feed ingredient in Sparus aurata diet looks promising, although the quality of filets may be affected.
Collapse
Affiliation(s)
- Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giulia Maricchiolo
- Institute of Biological Resources and Marine Biotechnologies, National Research Council, Messina, Italy
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luca Nalbone
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vittorio Lo Presti
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
35
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
36
|
Chen CH, Lee YL, Wu MH, Chen PJ, Wei TS, Tseng CI, Chen WJ. Prenatal antioxidant-enriched and pro-oxidant-contained food, IL4 and IL13 pathway genes, and cord blood IgE. Sci Rep 2022; 12:2884. [PMID: 35190607 PMCID: PMC8861038 DOI: 10.1038/s41598-022-06951-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal oxidative balance might influence cord blood IgE (cIgE) levels. We aimed to explore if certain prenatal dietary sources of antioxidants and pro-oxidants are associated with cIgE elevation and if they interact with IL4 and IL13 pathway genes. A structured questionnaire was completed during the third trimester of pregnancy for 1107 full-term newborns. Surveyed antioxidant-enriched food included fish, shellfish, and fruit, whereas surveyed pro-oxidant-contained food included fried fish sticks and canned fish. Cord blood was collected for measuring cIgE levels and genotyping IL13 rs1800925, rs20541, rs848, IL4 rs2243250, and STAT6 rs324011. Fairly lean fish consumption showed protection against cIgE elevation (odds ratio [OR] 0.66; 95% CI 0.49–0.90) in the whole sample, while daily fruit (OR 0.46; 95% CI 0.27–0.79) and ≥ monthly canned fish (OR 2.81; 95% CI 1.24–6.36) exhibited associations only in genetically susceptible babies. A prenatal food protective index, comprising any fairly lean fish, daily fruit, and the absence of any canned fish, exerted dose–response protection against cIgE elevation in babies carrying the IL13 rs20541 GA or AA genotype (P for trend < 0.0001; P for interaction = 0.004). We concluded that prenatal antioxidant-enriched and pro-oxidant-contained food consumption may influence cIgE, especially in genetically susceptible babies.
Collapse
Affiliation(s)
- Chien-Han Chen
- Department of Pediatrics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pediatrics, Min-Sheng General Hospital, Taoyüan City, Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Laboratory Medicine, Min-Sheng General Hospital, Taoyüan City, Taiwan
| | - Pao-Jen Chen
- Department of Obstetrics and Gynecology, Min-Sheng General Hospital, Taoyüan City, Taiwan
| | - Tien-Shan Wei
- Department of Obstetrics and Gynecology, Min-Sheng General Hospital, Taoyüan City, Taiwan
| | - Ching-Ing Tseng
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan. .,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
37
|
Costa M, Losada-Barreiro S, Vicente A, Bravo-Díaz C, Paiva-Martins F. Unexpected Antioxidant Efficiency of Chlorogenic Acid Phenolipids in Fish Oil-in-Water Nanoemulsions: An Example of How Relatively Low Interfacial Concentrations Can Make Antioxidants to Be Inefficient. Molecules 2022; 27:molecules27030861. [PMID: 35164119 PMCID: PMC8838834 DOI: 10.3390/molecules27030861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
Selecting effective antioxidants is challenging since their efficiency in inhibiting lipid oxidation depends on the rate constants of the chemical reactions involved and their concentration at the reaction site, i.e., at the interfacial region. Accumulation of antioxidants at the interface of emulsions is key to modulate their efficiency in inhibiting lipid oxidation but its control was not well understood, especially in emulsions. It can be optimized by modifying the physicochemical properties of antioxidants or the environmental conditions. In this work, we analyze the effects of surfactant concentration, droplet size, and oil to water ratio on the effective interfacial concentration of a set of chlorogenic acid (CGA) esters in fish oil-in-water (O/W) emulsions and nanoemulsions and on their antioxidant efficiency. A well-established pseudophase kinetic model is used to determine in the intact emulsified systems the effective concentrations of the antioxidants (AOs). The relative oxidative stability of the emulsions is assessed by monitoring the formation of primary oxidation products with time. Results show that the concentration of all AOs at the interfacial region is much higher (20–90 fold) than the stoichiometric one but is much lower than those of other phenolipid series such as caffeic or hydroxytyrosol derivatives. The main parameter controlling the interfacial concentration of antioxidants is the surfactant volume fraction, ΦI, followed by the O/W ratio. Changes in the droplet sizes (emulsions and nanoemulsions) have no influence on the interfacial concentrations. Despite the high radical scavenging capacity of CGA derivatives and their being concentrated at the interfacial region, the investigated AOs do not show a significant effect in inhibiting lipid oxidation in contrast with what is observed using other series of homologous antioxidants with similar reactivity. Results are tentatively interpreted in terms of the relatively low interfacial concentrations of the antioxidants, which may not be high enough to make the rate of the inhibition reaction faster than the rate of radical propagation.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - António Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Correspondence:
| |
Collapse
|
38
|
An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022; 11:foods11030338. [PMID: 35159493 PMCID: PMC8834512 DOI: 10.3390/foods11030338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage. In this context, antimicrobial active packaging is one such promising solution to meet consumer demands. The main objective of this study was to evaluate the effects of an active polypropylene-based packaging functionalized with the antimicrobial peptide 1018K6 on microbial growth, physicochemical properties and the sensory attributes of raw salmon fillets. The results showed that application of 1018K6-polypropylene strongly inhibited the microbial growth of both pathogenic and specific spoilage organisms (SSOs) on fish fillets after 7 days. Moreover, salmon also kept its freshness as per volatile chemical spoilage indices (CSIs) during storage. Similar results were obtained on hamburgers of Sarda sarda performing the same analyses. This work provides further evidence that 1018K6-polymers have good potential as antimicrobial packaging for application in the food market to enhance quality and preserve the sensorial properties of fish products.
Collapse
|
39
|
Jia H, Roy K, Pan J, Mraz J. Icy affairs: Understanding recent advancements in the freezing and frozen storage of fish. Compr Rev Food Sci Food Saf 2022; 21:1383-1408. [DOI: 10.1111/1541-4337.12883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Hui Jia
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Koushik Roy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Jinfeng Pan
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Jan Mraz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| |
Collapse
|
40
|
Chitosan nano-coating incorporated with green cumin (Cuminum cyminum) extracts: an active packaging for rainbow trout (Oncorhynchus mykiss) preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01278-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Brown P, Dave D. Current freezing and thawing scenarios employed by North Atlantic fisheries: their potential role in Newfoundland and Labrador's northern cod ( Gadus morhua) fishery. PeerJ 2021; 9:e12526. [PMID: 34966580 PMCID: PMC8667752 DOI: 10.7717/peerj.12526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022] Open
Abstract
Seafood is very perishable and can quickly spoil due to three mechanisms: autolysis, microbial degradation, and oxidation. Primary commercial sectors within the North Atlantic fisheries include demersal, pelagic, and shellfish fisheries. The preservation techniques employed across each sector can be relatively consistent; however, some key differences exist across species and regions to maintain product freshness. Freezing has long been employed as a preservation technique to maintain product quality for extended periods. Freezing allows seafood to be held until demand improves and shipped long distances using lower-cost ground transportation while maintaining organoleptic properties and product quality. Thawing is the opposite of freezing and can be applied before additional processing or the final sale point. However, all preservation techniques have limitations, and a properly frozen and thawed fish will still suffer from drip loss. This review summarizes the general introduction of spoilage and seafood spoilage mechanisms and the latest preservation techniques in the seafood industry, focusing on freezing and thawing processes and technologies. This review also considers the concept of global value chains (GVC) and the points to freeze and thaw seafood along the GVC to improve its quality with the intention of helping Newfoundland and Labrador’s emerging Northern cod (Gadus morhua) fisheries enhance product quality, meet market demands and increase stakeholder value.
Collapse
Affiliation(s)
- Pete Brown
- Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute of Memorial University, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Deepika Dave
- Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute of Memorial University, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
42
|
Aspevik T, Steinsholm S, Vang B, Carlehög M, Arnesen JA, Kousoulaki K. Nutritional and Sensory Properties of Protein Hydrolysates Based on Salmon ( Salmo salar), Mackerel ( Scomber scombrus), and Herring ( Clupea harengus) Heads and Backbones. Front Nutr 2021; 8:695151. [PMID: 34957173 PMCID: PMC8703218 DOI: 10.3389/fnut.2021.695151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Protein hydrolysates based on salmon, mackerel, and herring heads and backbones were produced, and the sensory properties of the hydrolysates were evaluated by a highly trained sensory panel. The nutritional content of the products was evaluated, and the hydrolysates contained all the amino acids inherent to the raw material, including considerable levels of connective tissue amino acids glycine, proline, and hydroxyproline. Hydrolysates based on herring were the most flavor intense, whereas hydrolysates based on salmon were deemed more palatable. In this work, choice of fraction (heads vs. backbones) and enzyme had minor effects on sensory and nutritional properties, indicating that choice of raw material species was the major factor for flavor development in the produced protein hydrolysates. There were large variations in protein content and amino acid composition in the raw material fractions, but as expected, only minor variations were found in the final products.
Collapse
Affiliation(s)
- Tone Aspevik
- Department Nutrition and Feed Technology, Nofima, Fyllingsdalen, Norway
| | - Silje Steinsholm
- Department Nutrition and Feed Technology, Nofima, Fyllingsdalen, Norway
| | - Birthe Vang
- Department Marine Biotechnology, Nofima, Tromsø, Norway
| | - Mats Carlehög
- Department Consumer and Sensory Sciences, Nofima, Ås, Norway
| | | | | |
Collapse
|
43
|
Sripokar P, Hansen EB, Zhang Y, Maneerat S, Klomklao S. Ka‐pi‐plaa
fermented using beardless barb fish: physicochemical, microbiological and antioxidant properties as influenced by production processes. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pakteera Sripokar
- Biotechnology Program Faculty of Agro and Bio Industry Thaksin University Phatthalung Campus Phatthalung 93210 Thailand
| | - Egon Bech Hansen
- National Food Institute Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Yi Zhang
- IPREM E2S UPPA CNRS Université de Pau et des Pays de l’Adour Pau 64000 France
| | - Suppasil Maneerat
- Department of Industrial Biotechnology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90112 Thailand
| | - Sappasith Klomklao
- Department of Food Science and Technology Faculty of Agro and Bio Industry Thaksin University Phatthalung Campus Phatthalung 93210 Thailand
| |
Collapse
|
44
|
Soldado D, Bessa RJB, Jerónimo E. Condensed Tannins as Antioxidants in Ruminants-Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals (Basel) 2021; 11:3243. [PMID: 34827975 PMCID: PMC8614414 DOI: 10.3390/ani11113243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Condensed tannins (CTs) are widely distributed in plants, and due to their recognized antioxidant activity are considered as possible natural antioxidants for application in ruminant diets. A wide range of CT-rich sources has been tested in ruminant diets, and their effects on animal antioxidant status and oxidative stability of their products are reviewed in the present work. Possible mechanisms underlying the CT antioxidant effects in ruminants are also discussed, and the CT chemical structure is briefly presented. Utilization of CT-rich sources in ruminant feeding can improve the animals' antioxidant status and oxidative stability of their products. However, the results are still inconsistent. Although poorly understood, the evidence suggests that CTs can induce an antioxidant effect in living animals and in their products through direct and indirect mechanisms, which can occur by an integrated and synergic way involving: (i) absorption of CTs with low molecular weight or metabolites, despite CTs' poor bioavailability; (ii) antioxidant action on the gastrointestinal tract; and (iii) interaction with other antioxidant agents. Condensed tannins are alternative dietary antioxidants for ruminants, but further studies should be carried out to elucidate the mechanism underlying the antioxidant activity of each CT source to design effective antioxidant strategies based on the use of CTs in ruminant diets.
Collapse
Affiliation(s)
- David Soldado
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Rui J. B. Bessa
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), 7801-908 Beja, Portugal
| |
Collapse
|
45
|
Tian J, Walayat N, Ding Y, Liu J. The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations. Compr Rev Food Sci Food Saf 2021; 21:321-339. [PMID: 34766434 DOI: 10.1111/1541-4337.12865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
Freeze-induced changes including protein denaturation, ice crystals formation and lipid oxidation are mainly responsible for the quality deterioration persistent in aquatic foods. Here, for the first time, the cryoprotectants with trifunctional properties have been suggested for aquatic food cryopreservation and have exhibited exceptional cryoprotective abilities. In this study, in-depth discussion of protein denaturation, ice crystal formation and lipid oxidation is added in order to understand their mechanism, emphasizing on the necessity and use of trifunctional cryoprotectants in aquatic foods during frozen storage. Trifunctional cryoprotectants have strong abilities to prevent the formation of malondihaldehyde and aldehydes resulting from lipid oxidation, which further interact with proteins, subsequently lead to protein denaturation. Besides these all cryoprotective properties, ice crystal binding abilities distinguish trifunctional cryoprotectants from conventional cryoprotectants. Moreover, this study added with recent advances in cryoprotectants including antifreeze proteins and protein hydrolysates with their role in retarded freeze-induced changes. This study concluded that trifunctional cryoprotectants are effective owing to their hydrophilic amino acid chains, radical scavenging, water entrapping abilities, as well as the hydroxyl groups, which interact at the functional sites of protein molecules. Furthermore, polysaccharides and protein hydrolysates are the potential ingredients with trifunctional cryoproperties. However, more scientific research is required for material optimization to attain the desired level of cryoprotection.
Collapse
Affiliation(s)
- Jing Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China.,National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P. R. China
| |
Collapse
|
46
|
Rampelotto C, Speroni CS, Conte L, Pianesso D, Machado IS, Rodrigues RF, Minuzzi NM, Adorian TJ, Klein B, Wagner R, Baldisserotto B, da Silva LP, Heinzmann BM, de Menezes CR, Emanuelli T. Microencapsulated Lemongrass (Cymbopogon flexuosus) Essential Oil Supplementation on Quality and Stability of Silver Catfish Fillets during Frozen Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Cristine Rampelotto
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Caroline S. Speroni
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Lisiane Conte
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Dirleise Pianesso
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Isadora S. Machado
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Renata F. Rodrigues
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natália M. Minuzzi
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Taida J. Adorian
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna Klein
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Roger Wagner
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leila P. da Silva
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Berta M. Heinzmann
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cristiano R. de Menezes
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
47
|
Macedo IME, Andrade HA, Shinohara NKS, Maciel MIS, Glória MBA, Oliveira Filho PRC. Influence of ultrasound on the microbiological and physicochemical stability of saramunete (
Pseudupeneus maculatus
) sausages. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Humber Agrelli Andrade
- Department of Fisheries and Aquaculture Federal Rural University of Pernambuco – UFRPE Recife Brazil
| | | | | | | | | |
Collapse
|
48
|
Susceptibility to Oxidation of Selected Freshwater Fish Species Lipids as a Potential Source of Fish Oil in Dietary Supplements. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7191639. [PMID: 34458363 PMCID: PMC8397553 DOI: 10.1155/2021/7191639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Polyunsaturated fatty acids from the omega 3 family are more and more often supplied to the diet in the form of supplements. The aim of the study was to characterize the lipid fractions of predatory freshwater fish, i.e., pike (Esox lucius L.), perch (Perca fluviatilis L.), and pike perch (Sander lucioperca L.), and omnivorous fish, i.e., bream (Abramis brama L.) and roach (Rutilus rutilus L.). Their technological usefulness in terms of the source of fish oil was determined, depending on the rate and degree of their oxidative changes. UV radiation (photooxidation test) was used as a factor accelerating lipid oxidation. Research has shown that selected species of freshwater fish are characterized by high lipid oxidative stability, due to the availability and speed of delivery to the processing plant. The initial level of lipid oxidation of their meat, expressed by the TOTOX index, in any species did not exceed the value of 7, while the acceptable value was 26. The oil obtained from the meat of omnivorous fish after the photooxidation process was characterized by significantly better oxidative stability compared to the oil from the meat of predatory fish. The oxidation resistance of omnivorous fish oil was shown to be higher than that of predatory fish.
Collapse
|
49
|
Binh NTT, Bao HND, Prinyawiwatkul W, Trung TS. Antioxidative and antimicrobial effects of low molecular weight shrimp chitosan and its derivatives on seasoned‐dried Pangasius fillets. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nguyen Thi Thanh Binh
- Food Engineering Technology Department Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Huynh Nguyen Duy Bao
- Faculty of Food Technology Nha Trang University 02 Nguyen Dinh Chieu Street Nha Trang Vietnam
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA 70803 USA
| | - Trang Si Trung
- Faculty of Food Technology Nha Trang University 02 Nguyen Dinh Chieu Street Nha Trang Vietnam
| |
Collapse
|
50
|
Huang YZ, Liu Y, Jin Z, Cheng Q, Qian M, Zhu BW, Dong XP. Sensory evaluation of fresh/frozen mackerel products: A review. Compr Rev Food Sci Food Saf 2021; 20:3504-3530. [PMID: 34146450 DOI: 10.1111/1541-4337.12776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
Mackerel has received considerable attention in the global food market as one of the most important pelagic commercial fish species. The quality of mackerel is influenced by species, season, fishing area, nutritional status, catching method, handling, and storage. Due to the mackerel's perishability, its quality is mainly measured by sensory procedures. Although considerable effort has been made to explore quick and reliable quality analysis, developing a practical and scientific sensory evaluation of mackerel has been an active ongoing study area to meet the quality evaluation demand of the industry. Different sensory evaluation methods have been used to assess the mackerel fish quality, including Palatability and Spoilage test, Torry scheme, EU scheme, Quality Index Method, Catch damage index and Processed fish damage index, Affective test, Discriminative test, and Descriptive test. Each method has its strength and weakness. Despite mackerel sensory evaluation protocols having undergone partial harmonization, specific sample process needs to be carefully followed to minimize the change during sample preparation. This review summarizes the sensory evaluation methods in mackerel research, the factors affecting sensory evaluation, and then updates the latest advances in mackerel sensory evaluation and offers guidance for presenting its application in the mackerel chain. Also, each technique's advantages and limitations are discussed. In our opinion, the future trends for sensory evaluation of mackerel should be consumer-centric.
Collapse
Affiliation(s)
- Yi-Zhen Huang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Zheng Jin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Michael Qian
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Bei-Wei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Xiu-Ping Dong
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|