1
|
Zheng J, Shang M, Dai G, Dong J, Wang Y, Duan B. Bioactive polysaccharides from Momordica charantia as functional ingredients: a review of their extraction, bioactivities, structural-activity relationships, and application prospects. Crit Rev Food Sci Nutr 2024; 64:12103-12126. [PMID: 37599638 DOI: 10.1080/10408398.2023.2248246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.
Collapse
Affiliation(s)
- Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
2
|
Zhang J, Li X, Sha Y, Wang Z, Qi S, Zhang X, Zhao S, Jiao T. Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep. Animals (Basel) 2024; 14:1991. [PMID: 38998102 PMCID: PMC11240710 DOI: 10.3390/ani14131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The experiment was conducted to investigate the potential effects of steviol glycosides on growth performance, rumen fermentation processes, and microbial diversity in Hu sheep. A single-factor design was used for the trial. Twenty healthy weaned Hu lambs, possessing comparable body weights averaging 18.31 ± 1.24 kg, were randomly allocated into two distinct groups: the control group (CON) and the experimental group (STE), with each comprising 10 lambs. The CON was fed the basal diet, and the STE was supplemented with 0.07% steviol glycosides based on the basal diet. During the experimental period, variations in body weight and feed intake were closely monitored and recorded. After feeding for 90 d, blood was collected to determine blood biochemical indices, and rumen fluid samples were gathered for an in-depth analysis of rumen fermentation parameters and microbial diversity. The outcomes revealed no statistically significant differences in growth performance or serum biochemical indices between the two groups (p > 0.05). Rumen pH in STE and CON was within the normal range. The rumen ammonia nitrogen (NH3-N) and acetic acid (AA) content of STE decreased significantly compared with CON (p < 0.05). No significant variations were observed in the levels of other volatile fatty acids (VFAs) between the two groups (p > 0.05). The rumen microbial OTUs count, as well as the Shannon, Simpson, Chao1, and Ace indices, were notably lower in the STE group compared to the CON group (p < 0.05). Additionally, at the phylum level, the relative abundance of Firmicutes, Bacteroidetes, and Proteobacteria collectively accounted for over 97% of the total phylum composition. In comparison to the CON group, the STE group exhibited an increase in the relative abundance of Proteobacteria (p < 0.05), accompanied by a significant reduction in the relative abundance of Patescibacteria and Desulfobacteria (p < 0.05). At the genus level, there was a notable increase in the relative abundance of Prevotella_7 and Succinivibrionaceae_UCG_001 in the STE group, whereas the relative abundance of Rikenellaceae_RC9_gut_group significantly decreased (p < 0.05). According to the correlation analysis between rumen microflora and VFAs, the relative abundance of Succinivibrionaceae_UCG_001 displayed a significant negative correlation with AA (p < 0.05), whereas Lactobacillus exhibited a notable positive correlation with isobutyric acid (IBA) (p < 0.05). In summary, steviol glycosides had no significant effect on the production performance and blood biochemical indexes of Hu sheep. Steviol glycosides can improve rumen fermentation parameters and rumen microflora structure of Hu sheep and have a certain effect on rumen microbial diversity and composition.
Collapse
Affiliation(s)
- Jianeng Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Qi
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Xia Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Dhakal R, Neves ALA, Sapkota R, Khanal P, Ellegaard-Jensen L, Winding A, Hansen HH. Temporal dynamics of volatile fatty acids profile, methane production, and prokaryotic community in an in vitro rumen fermentation system fed with maize silage. Front Microbiol 2024; 15:1271599. [PMID: 38444805 PMCID: PMC10912478 DOI: 10.3389/fmicb.2024.1271599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.
Collapse
Affiliation(s)
- Rajan Dhakal
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Prabhat Khanal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Wang J, Zhao K, Li M, Fan H, Wang M, Xia S, Chen Y, Bai X, Liu Z, Ni J, Sun W, Jia X, Lai S. A Preliminary Study of the Potential Molecular Mechanisms of Individual Growth and Rumen Development in Calves with Different Feeding Patterns. Microorganisms 2023; 11:2423. [PMID: 37894081 PMCID: PMC10609084 DOI: 10.3390/microorganisms11102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
At present, it is common to feed calves with "Concentrate", "Concentrate + hay" and TMR "Total Mixed Rations" feeding patterns in China, which achieved well feeding efficiency, but the three feeding patterns molecular regulation mechanism in actual production is still unclear. The study aimed to explore the most suitable feeding pattern for Chinese Holstein calves to improve the rumen fermentation function and growth performance of calves. In this regard, the interactions between rumen microorganisms and host metabolism were investigated. The rumen volume and weight of calves in the GF group were significantly higher than those in the GFF and TMR groups (p < 0.05), and the rumen pH of calves in the GF group was 6.47~6.79. Metagenomics analysis revealed that the rumen microbiome of GF and GFF calves had higher relative abundances of Methanobrevibacter, Methanosphaera, and Methanolacinia (p < 0.05). Prevotella multisaccharivorax was significantly more abundant in the rumen of GF calves (p < 0.05), indicating that GF group calves had a stronger ability to ferment sugars. Notably, in the pyruvate metabolic pathway, phosphoenolpyruvate carboxylase was significantly up-regulated in GF calves compared with the TMR group, and pyruvate-phosphate dikinase was significantly down-regulated. Metabolomic results showed that Ursodeoxycholic acid was significantly up-regulated in GF calves, and most of the differential metabolites were enriched in Bile secretion pathways. The association analysis study found that the microorganisms of Prevotella and Ruminococcaceae might cooperate with the host, which was helpful for the digestion and absorption of lipids and made the calves have better growth. The three feeding modes had similar effects, but the 'GF' feeding pattern was more beneficial to the individual growth and ruminal development regarding ruminal morphology, contents physiology and microorganisms. Furthermore, the synergistic effect of rumen microorganisms and the host could more effectively hydrolyze lipid substances and promote the absorption of lipids, which was of great significance to the growth of calves.
Collapse
Affiliation(s)
- Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Mianying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Yang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Jiale Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| |
Collapse
|
5
|
Erdoğan F, Kaplan AA, Coşkun HS, Altun G, Altunkaynak BZ, Kelsaka E, Kaplan S, Pişkin A. Momordica charantia Enhances Tendon Healing in Rats: An Experimental Study. Cells Tissues Organs 2023; 213:304-315. [PMID: 37586334 DOI: 10.1159/000533644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Momordica charantia (MC) is a traditional plant widely used since ancient times for wound healing. This study evaluated its potential effects on tendon healing. Adult male Wistar albino rats (n = 32, 8 rats in each group) were anesthetized, and their Achilles tendons were prepared for surgical procedures. Group 1 (Cont = control group) was not subjected to any surgery and was used as a control group for baseline values. Group 2 (PR = primary repair group) underwent primary repair (PR) with a monofilament suture after a full-thickness incision of the Achilles tendon. A full-thickness incision was also made to the Achilles tendon of group 3 (CT = collagen tube-administered group), followed by PR and collagen tube insertion. In group 4 (MC = M. charantia-administered group), 1 mL of MC extract was applied locally on the collagen tube in addition to the surgical procedure applied to group 3. The Achilles tendons were excised on the postoperative 40th day and examined stereologically, histologically, and bioinformatically. Data showed that the total volume of the collagen fibers was higher in MC and CT groups than in the PR group. The total volume of the tendon was decreased in MC and CT groups than in the Cont group. The ratios between the volumes of the collagen fibers and total tendon in the MC and CT groups were significantly different from PR, but not different from the Cont group. Additionally, MC improved tenoblastic activity, collagen production, and neovascularization. Bioinformatic interactions showed that the proteases of MC could trigger the signals playing a role on vasculogenesis, reducing inflammation, and contributing to tenoblast activation and collagen remodeling. MC extract ameliorates the healing of injured tendon and can provide satisfactory tendon repair. Further works are recommended to explore the healing capacity of MC.
Collapse
Affiliation(s)
- Furkan Erdoğan
- Clinic of Orthopaedic and Traumatology, Sabuncuoğlu Şerafeddin Training and Research Hospital, Amasya, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, Samsun, Turkey
| | - Hüseyin Sina Coşkun
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, Istanbul, Turkey
| | - Ebru Kelsaka
- Department of Anaesthesia and Reanimation, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Ahmet Pişkin
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
7
|
Dietary Polysaccharide-Rich Extract from Noni ( Morinda citrifolia L.) Fruit Modified Ruminal Fermentation, Ruminal Bacterial Community and Nutrient Digestion in Cashmere Goats. Animals (Basel) 2023; 13:ani13020221. [PMID: 36670760 PMCID: PMC9854603 DOI: 10.3390/ani13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
In two consecutive studies, we evaluated the effects of polysaccharide-rich noni (Morinda citrifolia L.) fruit extract (NFP) on ruminal fermentation, ruminal microbes and nutrient digestion in cashmere goats. In Exp. 1, the effects of a diet containing NFP of 0, 0.1%, 0.2%, 0.4% and 0.55% on in vitro ruminal fermentation at 3, 6, 9, 12 and 24 h were determined, whereas in Exp. 2, fourteen cashmere goats (46.65 ± 3.36 kg of BW ± SD) were randomly assigned to two treatments: the basal diet with or without (CON) supplementation of NFP at 4 g per kg DM (0.4%). The in vitro results showed that NFP linearly increased concentrations of volatile fatty acids (VFA), quadratically decreased ammonia-N concentration, and changed pH, protozoa number, gas production and the microbial protein (MCP) concentration, and was more effective at 0.4% addition, which yielded similar results in ruminal fermentation in Exp. 2. In addition, NFP increased the apparent digestibility of dry matter and crude protein and the abundance of Firmicutes, and reduced the abundance of Bacteroides and Actinobacteria. Ruminococcus_1 was positively associated with VFA concentration. The Rikenellaceae_RC9_gut_group was positively correlated with protozoa and negatively correlated with MCP concentration. Thus, NFP has potential as a ruminal fermentation enhancer for cashmere goats.
Collapse
|
8
|
Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study aimed to explore the dynamic variations of rumen fermentation characteristics and bacterial community composition during a 24 h in vitro fermentation. A total of twenty-three samples were collected from original rumen fluid (ORF, n = 3), fermentation at 12 h (R12, n = 10), and fermentation at 24 h (R24, n = 10). Results showed that gas production, concentrations of microbial crude protein, ammonia nitrogen, and individual volatile fatty acids (VFA), as well as total VFA and branched-chain VFA concentrations, were higher in R24 when compared with R12 (p < 0.05). However, no significant differences were observed in acetate to propionate ratio and fermentation efficiency between R12 and R24 (p > 0.05). Bacterial diversity analysis found that Shannon index and Simpson index were higher in R24 (p < 0.05), and obvious clusters were observed in rumen bacterial community between R12 and R24. Taxonomic analysis at the phylum level showed that the abundances of Proteobacteria and Fibrobacteres were higher in R12 than that in R24, and inverse results were observed in Bacteroidetes, Firmicutes, Cyanobacteria, Verrucomicrobia, Lentisphaerae, and Synergistetes abundances. Taxonomic analysis at the genus level revealed that the abundances of Rikenellaceae RC9 gut group, Succiniclasticum, Prevotellaceae UCG-003, Christensenellaceae R-7 group, Ruminococcaceae UCG-002, Veillonellaceae UCG-001, and Ruminococcaceae NK4A214 group were higher in R24, whereas higher abundances of Succinivibrionaceae UCG-002, Ruminobacter, and Fibrobacter, were found in R12. Correlation analysis revealed the negative associations between gas production and abundances of Proteobacteria, Succinivibrionaceae UCG-002, and Ruminobacter. Moreover, the abundances of Firmicutes, Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, and Ruminococcaceae UCG-002 positively correlated with VFA production. These results indicate that both rumen fermentation characteristics and bacterial community composition were dynamic during in vitro fermentation, whereas the fermentation pattern, efficiency, and bacterial richness remained similar. This study provide insight into the dynamics of rumen fermentation characteristics and bacterial composition during in vitro fermentation. This study may also provide a reference for decision-making for the sampling time point when conducting an in vitro fermentation for bacterial community investigation.
Collapse
|
9
|
Oyelere SF, Ajayi OH, Ayoade TE, Santana Pereira GB, Dayo Owoyemi BC, Ilesanmi AO, Akinyemi OA. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon 2022; 8:e09253. [PMID: 35434401 PMCID: PMC9010624 DOI: 10.1016/j.heliyon.2022.e09253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally, with an annual mortality of more than one million people. This high mortality rate highlights the need for in-depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mechanisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also, the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance, activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of Science.
Collapse
|
10
|
Momordica Charantia Polysaccharides Attenuates MPP+-Induced Injury in Parkinson’s Disease Mice and Cell Models by Regulating TLR4/MyD88/NF-κB Pathway. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5575636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective. To investigate the potential role of Momordica charantia polysaccharides (MCPs) in Parkinson’s disease (PD) and reveal the molecular mechanism of its function. Method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (1-methyl-4-phenylpyridinium, MPP+) were used to establish PD mice and cell models. The mice and cells were divided into 4 groups: Control group, Control+MCPs group, PD group, and PD+MCPs group. Pole climbing experiment and Rotarod experiment were used to observe the coordination ability of mice. High-performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA) were used to determine neurotransmitters and metabolites, inflammatory factors TNF-α and IL-1β, oxidative stress-related markers SOD, MDA, and GSH in striatum tissues. Western blot was used to determine the protein levels of tyrosine hydroxylase (TH), oxidative stress-related protein Cytochrome C (Cytochrome C), and apoptosis-related proteins Bcl-2, Bax, and cleaved Caspase-3 in tissues and cells. Moreover, flow cytometry, PI staining, and fluorescence were used to observe cell apoptosis. Finally, the activation effect of MCPs on TLR4/MyD88/NF-κB signaling pathway was observed and verified. Results. Compared with the Control group, MPTP treatment can induce brain damage in mice (all
), change the metabolic state of neurotransmitters (all
), induce inflammation (all
), and induce apoptosis and the occurrence of oxidation reaction (all
); however, MCPs treatment can significantly reverse the above changes (all
). In cell models, studies have found that MCPs can play a protective role by regulating the activation state of TLR4/MyD88/NF-κB pathway. Conclusion. This study found that the application of MCPs therapy can play anti-inflammatory, antioxidative stress, and antiapoptotic effects in PD by regulating the activation of the TLR4/MyD88/NF-κB pathway.
Collapse
|
11
|
Guo T, Wang ZL, Guo L, Li F, Li F. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl Anim Sci 2021; 5:txab065. [PMID: 34179701 PMCID: PMC8221454 DOI: 10.1093/tas/txab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
The objectives were to evaluate the effects of fiber source and dietary starch level on growth performance, nutrient digestion, rumen parameters, and rumen bacteria in fattening Hu lambs. A total of 360 Hu lambs (BW = 24.72 ± 0.14 kg, 2 months old) were subjected to a 2 × 3 factorial arrangement. Lambs randomly assigned 6 treatments with 6 repetitions (10 lambs per repetition) of each treatment. Six treatments were formulated to include the fiber sources with three starch levels. The experiment lasted a 63 d. The amount of feed, orts, and total feces were sampled on the 42nd day of the experiment. Rumen fluid samples were collected after 2 h of morning feeding on day 56. Rumen contents were collected last day after the selected lambs were slaughtered. Increasing the starch content decreased the digestibility of neutral detergent fiber (NDF, P = 0.005). Increasing the starch level increased the proportions of propionate (P = 0.002) and valerate (P = 0.001) and decreased the proportion of acetate (P < 0.001) and the ratio of acetate to propionate (P = 0.005). The abundance of Fibrobacter succinogenes was affected by an interaction between the fiber source and the starch level (P < 0.001). Fibrobacter succinogenes tended to be greater in lambs fed SH than in lambs fed BP (P = 0.091), which was greater in lambs fed high starch levels than in lambs fed low starch levels (P = 0.014). Increasing the starch level increased Streptococcus bovis abundance (P = 0.029) and decreased total bacteria (P = 0.025). At the genus level, increasing the starch level reduced the abundance of Butyrivibrio_2 (P = 0.020). Nevertheless, the final body weight (BW) and acid detergent fiber (ADF) digestibility were greater (P < 0.01) in lambs fed soybean hull (SH) than in lambs fed BP. The proportion of butyrate was greater (P = 0.005), while the rumen pH was lower (P = 0.001) in lambs fed beet pulp (BP) than in those fed SH. The abundances of Succiniclasticum, Candidatus_Saccharimonas, Ruminococcus_1, and Christensenellaceae_R-7 were greater in lambs fed SH than in those fed BP (P < 0.050), whereas the abundance of Fibrobacter was lower (P = 0.011). The predominant microbial phyla in all of the groups were Firmicutes, Bacteroidetes, and Fibrobacteres. Changing the starch level for fiber sources mainly changed the rumen community in terms of the phylum and genus abundances. Lambs fed SH with low starch level increased the final BW without affecting total volatile fatty acids (TVFA) concentrations.
Collapse
Affiliation(s)
- Tongqing Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Zhi Lan Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Long Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Fei Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| |
Collapse
|
12
|
Wang Y, Wang R, Hao X, Hu Y, Guo T, Zhang J, Wang W, Shi X, An X, Qi J. Growth performance, nutrient digestibility, immune responses and antioxidant status of lambs supplemented with humic acids and fermented wheat bran polysaccharides. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Lupinus angustifolius seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Cui X, Wang Z, Yan T, Chang S, Wang H, Hou F. Rumen bacterial diversity of Tibetan sheep ( Ovis aries) associated with different forage types on the Qinghai-Tibetan Plateau. Can J Microbiol 2019; 65:859-869. [PMID: 31386822 DOI: 10.1139/cjm-2019-0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diet is the great determinant of bacterial composition in the rumen. However, little is known about the rumen bacterial community of Tibetan sheep living in the special ecological environment of the Qinghai-Tibetan Plateau (QTP) of China. In the present study, we used high-throughput sequencing to investigate the rumen bacterial community of Tibetan sheep associated with two primary diets: alpine pasture diet (a continuation of the sheep's natural grazing diet) and oat (Avena sativa) hay diet on the QTP. The results showed that bacterial community richness and species diversity of the oat hay diet group were significantly greater than that of the native pasture diet group (p < 0.05). Principal co-ordinate analysis and analysis of similarities revealed that the bacterial community of the oat hay diet group was distinctly different from that of the native pasture diet group (p < 0.05). Bacteroidetes and Firmicutes were the predominant microbial phyla in the rumen. The rumen of oat-hay-fed sheep had higher proportions of Proteobacteria and novel bacteria species than the rumen of native-pasture-fed sheep. Actinobacteria, an uncommon bacterial phylum, occurred only in the oat-hay-fed group. At the genus level, Komagataeibacter, Ruminococcaceae_UCG-014, and Ruminococcaceae_NK4A214 showed significantly higher relative abundance in the oat-hay-fed sheep than in the native-pasture-fed sheep (p < 0.05). This study is the first of the QTP to employ high-throughput sequencing to examine the influence of diet on the rumen microbiome of Tibetan sheep.
Collapse
Affiliation(s)
- Xiongxiong Cui
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhaofeng Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hong Wang
- Animal Husbandry Science and Technology Demonstration Park of Maqu County, Gannan, Gansu Province, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
15
|
Wang L, Liu K, Wang Z, Bai X, Peng Q, Jin L. Bacterial Community Diversity Associated With Different Utilization Efficiencies of Nitrogen in the Gastrointestinal Tract of Goats. Front Microbiol 2019; 10:239. [PMID: 30873128 PMCID: PMC6401623 DOI: 10.3389/fmicb.2019.00239] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to examine the association between bacterial community structure and the utilization efficiency of nitrogen (UEN) phenotypes by determining the bacterial community in the gastrointestinal tract (GIT) of goats that differ in UEN using high-throughput 16S rRNA gene sequencing. Thirty Nubian goats were selected as experimental animals, and their UEN was determined in a metabolic experiment. Subsequently, eight individuals were grouped into the high nitrogen utilization (HNU) phenotype, and seven were grouped into the low nitrogen utilization (LNU) phenotype. The bacterial 16S rRNA gene amplicons from the rumen, abomasum, jejunum, cecum and colon contents of these animals were sequenced using next-generation high-throughput sequencing technology. Two hundred thirty-nine genera belonging to 23 phyla in the rumen, 319 genera belonging to 30 phyla in the abomasum, 248 genera belonging to 36 phyla in the jejunum, 248 genera belonging to 25 phyla in the colon and 246 genera belonging to 23 phyla in the cecum were detected, with Bacteroidetes and Firmicutes predominating. In addition, a significant correlation was observed between the UEN and the genera Succiniclasticum, Bacteroides, Ruminobacter, Methanimicrococcus, Mogibacterium, Eubacterium_hallii_group and Ruminococcus_1 in the rumen; Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Bacteroidales_UCG-001 and Anaerovibrio in the abomasum; Ruminococcus_2, Candidatus_Saccharimonas, Candidatus_Arthromitus and Coprococcus_1 in the jejunum; Erysipelotrichaceae_UCG-004, Akkermansia, Senegalimassilia, Candidatus_Soleaferrea and Methanocorpusculum in the colon; and Ruminococcaceae_UCG-002, Anaerovibrio and Ruminococcaceae_UCG-007 in the cecum. Furthermore, the real-time PCR results showed that the ruminal copies of Fibrobacter_succinogenes, Butyrivibrio_fibrisolvens, Ruminococcus_sp._HUN007, Prevotella ruminicola and Streptococcus bovis in the HNU animals were significantly higher than those in the LNU animals. This study suggests an association of GIT microbial communities as a factor that influences UEN in goats.
Collapse
Affiliation(s)
- Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
16
|
Li Z, Bai H, Zheng L, Jiang H, Cui H, Cao Y, Yao J. Bioactive polysaccharides and oligosaccharides as possible feed additives to manipulate rumen fermentation in Rusitec fermenters. Int J Biol Macromol 2018; 109:1088-1094. [DOI: 10.1016/j.ijbiomac.2017.11.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
|
17
|
Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int J Mol Sci 2017; 18:E2555. [PMID: 29182587 PMCID: PMC5751158 DOI: 10.3390/ijms18122555] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.
Collapse
Affiliation(s)
- Shuo Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Fan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
18
|
Budi FS, Hariyadi P, Budijanto S, Syah D. KRISTALINITAS DAN KEKERASAN BERAS ANALOG YANG DIHASILKAN DARI PROSES EKSTRUSI PANAS TEPUNG JAGUNG. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2017. [DOI: 10.6066/jtip.2017.28.1.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|