1
|
Chen H, Hou K, Wu Y, Liu Z. Use of Adipose Stem Cells Against Hypertrophic Scarring or Keloid. Front Cell Dev Biol 2022; 9:823694. [PMID: 35071247 PMCID: PMC8770320 DOI: 10.3389/fcell.2021.823694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic scars or keloid form as part of the wound healing reaction process, and its formation mechanism is complex and diverse, involving multi-stage synergistic action of multiple cells and factors. Adipose stem cells (ASCs) have become an emerging approach for the treatment of many diseases, including hypertrophic scarring or keloid, owing to their various advantages and potential. Herein, we analyzed the molecular mechanism of hypertrophic scar or keloid formation and explored the role and prospects of stem cell therapy, in the treatment of this condition.
Collapse
Affiliation(s)
| | | | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Harn HIC, Wang SP, Lai YC, Van Handel B, Liang YC, Tsai S, Schiessl IM, Sarkar A, Xi H, Hughes M, Kaemmer S, Tang MJ, Peti-Peterdi J, Pyle AD, Woolley TE, Evseenko D, Jiang TX, Chuong CM. Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nat Commun 2021; 12:2595. [PMID: 33972536 PMCID: PMC8110808 DOI: 10.1038/s41467-021-22822-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (μm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Pei Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Stephanie Tsai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Hughes
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Stefan Kaemmer
- Park Systems Inc., 3040 Olcott Street, Santa Clara, CA, 95054, USA
| | - Ming-Jer Tang
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, UK
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Harn HIC, Chen CC, Wang SP, Lei M, Chuong CM. Tissue Mechanics in Haired Murine Skin: Potential Implications for Skin Aging. Front Cell Dev Biol 2021; 9:635340. [PMID: 33681217 PMCID: PMC7933214 DOI: 10.3389/fcell.2021.635340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
During aging, the skin undergoes changes in architecture and composition. Skin aging phenotypes occur due to accumulated changes in the genome/epigenome, cytokine/cell adhesion, cell distribution/extracellular matrix (ECM), etc. Here we review data suggesting that tissue mechanics also plays a role in skin aging. While mouse and human skin share some similarities, their skin architectures differ in some respects. However, we use recent research in haired murine skin because of the available experimental data. Skin suffers from changes in both its appendages and inter-appendage regions. The elderly exhibit wrinkles and loose dermis and are more likely to suffer from wounds and superficial abrasions with poor healing. They also have a reduction in the number of skin appendages. While telogen is prolonged in aging murine skin, hair follicle stem cells can be rejuvenated to enter anagen if transplanted to a young skin environment. We highlight recent single-cell analyses performed on epidermis and aging human skin which identified new basal cell subpopulations that shift in response to wounding. This may be due to alterations of basement membrane stiffness which would change tissue mechanics in aging skin, leading to altered homeostatic dynamics. We propose that the extracellular matrix (ECM) may play a key role as a chemo-mechanical integrator of the multi-layered senescence-associated signaling pathways, dictating the tissue mechanical landscape of niche microenvironments in aging phenotypes. We show examples where failed chemo-mechanical signaling leads to deteriorating homeostasis during skin aging and suggest potential therapeutic strategies to guide future research to delay the aging processes.
Collapse
Affiliation(s)
- Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Dermatology, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Pei Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Hsu CK, Lin HH, Harn HIC, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci 2018; 90:232-240. [PMID: 29567352 DOI: 10.1016/j.jdermsci.2018.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023]
Abstract
Mechanical forces are known to regulate homeostasis of the skin and play a role in the pathogenesis of skin diseases. The epidermis consists of keratinocytes that are tightly adhered to each other by cell junctions. Defects in keratins or desmosomal/hemidesmosomal proteins lead to the attenuation of mechanical strength and formation of intraepidermal blisters in the case of epidermolysis bullosa simplex. The dermis is rich in extracellular matrix, especially collagen, and provides the majority of tensile force in the skin. Keloid and hypertrophic scar, which is the result of over-production of collagen by fibroblasts during the wound healing, are associated with extrinsic tensile forces and changes of intrinsic mechanical properties of the cell. Increasing evidences shows that stiffness of the skin environment determines the regenerative ability during wound healing process. Mechanotransduction pathways are also involved in the morphogenesis and cyclic growth of hair follicles. The development of androgenetic alopecia is correlated to tensile forces generated by the fibrous tissue underlying the scalp. Acral melanoma predominantly occurs in the weight-bearing area of the foot suggesting the role of mechanical stress. Increased dermal stiffness from fibrosis might be the cause of recessive dystrophic epidermolysis bullosa associated squamous cell carcinoma. Strategies to change the mechanical forces or modify the mechanotransduction signals may lead to a new way to treat skin diseases and promote skin regeneration.
Collapse
Affiliation(s)
- Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael W Hughes
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Harn HIC, Ogawa R, Hsu CK, Hughes MW, Tang MJ, Chuong CM. The tension biology of wound healing. Exp Dermatol 2017; 28:464-471. [PMID: 29105155 DOI: 10.1111/exd.13460] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Following skin wounding, the healing outcome can be: regeneration, repair with normal scar tissue, repair with hypertrophic scar tissue or the formation of keloids. The role of chemical factors in wound healing has been extensively explored, and while there is evidence suggesting the role of mechanical forces, its influence is much less well defined. Here, we provide a brief review on the recent progress of the role of mechanical force in skin wound healing by comparing laboratory mice, African spiny mice, fetal wound healing and adult scar keloid formation. A comparison across different species may provide insight into key regulators. Interestingly, some findings suggest tension can induce an immune response, and this provides a new link between mechanical and chemical forces. Clinically, manipulating skin tension has been demonstrated to be effective for scar prevention and treatment, but not for tissue regeneration. Utilising this knowledge, specialists may modulate regulatory factors and develop therapeutic strategies to reduce scar formation and promote regeneration.
Collapse
Affiliation(s)
- Hans I-Chen Harn
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Chao-Kai Hsu
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ming Chuong
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|