1
|
Grigorieva EV, Strokotova AV, Ernberg I, Kashuba VI. Differential regulation of heparan sulfate biosynthesis in fibroblasts cocultured with normal vs. cancerous prostate cells. Front Immunol 2024; 15:1440623. [PMID: 39318629 PMCID: PMC11420852 DOI: 10.3389/fimmu.2024.1440623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) regulate a wide range of biological activities in both physiological and pathological conditions. Altered expression or deregulated function of HSPGs and their heparan sulfate (HS) chains significantly contribute to carcinogenesis as well and crucially depends on the functioning of the complex system of HS biosynthetic/modifying enzymes termed as "GAGosome". Here, we aimed at investigating the expression profile of the system in a cell culture model of stroma-epithelial crosstalk and searching for transcription factors potentially related to the regulation of expression of the genes involved. Coculture of BjTERT-fibroblasts with normal PNT2 human prostate epithelial cells resulted in significant downregulation (2-4-fold) of transcriptional activity of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) in both cell types, whereas coculture with prostate cancer cells (LNCaP, PC3, DU145) demonstrated no significant interchanges. Human Transcription Factor RT2 Profiler PCR array and manual RT-PCR verification supposed FOS, MYC, E2F, SRF, NR3C1 as potential candidates for regulation and/or coordination of HS biosynthesis. Taken together, transcriptional activity of HS biosynthetic system in normal fibroblasts and prostate epithelial cells during their coculture might be controlled by their intercellular communication, reflecting of adaptation of these cells to each other. The regulation is attenuated or abrogated if normal fibroblasts interact with prostate cancer cells making the cancer cells independent of the limiting effects of fibroblasts, thus contributing to possibility of unlimited growth and progression. Overall, these data demonstrate an ability of cell-cell interactions to affect transcriptional activity of HS biosynthesis-involved genes.
Collapse
Affiliation(s)
- Elvira V Grigorieva
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Anastasia V Strokotova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Vladimir I Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Leone GM, Mangano K, Caponnetto S, Fagone P, Nicoletti F. Identification of Poliovirus Receptor-like 3 Protein as a Prognostic Factor in Triple-Negative Breast Cancer. Cells 2024; 13:1299. [PMID: 39120328 PMCID: PMC11312209 DOI: 10.3390/cells13151299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Salvatore Caponnetto
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| |
Collapse
|
3
|
Li K, Huang Z, Xie G, Huang B, Song L, Zhang Y, Yang J. Transcriptomic insights into UTUC: role of inflammatory fibrosis and potential for personalized treatment. J Transl Med 2024; 22:24. [PMID: 38183115 PMCID: PMC10768331 DOI: 10.1186/s12967-023-04815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Upper tract urothelial carcinoma (UTUC) is a rare disease, belonging to the same category of urothelial cancers as bladder cancer (BC). Despite sharing similar non-surgical treatment modalities, UTUC demonstrates a higher metastasis propensity than BC. Furthermore, although both cancers exhibit similar molecular disease emergence mechanisms, sequencing data reveals some differences. Our study investigates the transcriptomic distinctions between UTUC and BC, explores the causes behind UTUC's heightened metastatic tendency, constructs a model for UTUC metastasis and prognosis, and propose personalized treatment strategies for UTUC. METHODS In our research, we utilized differential gene expression analysis, interaction networks, and Cox regression to explore the enhanced metastatic propensity of UTUC. We formulated and validated a prognostic risk model using diverse techniques, including cell co-culture, reverse transcription quantitative polymerase chain reaction (rt-qPCR), western blotting, and transwell experiments. Our methodological approach also involved survival analysis, risk model construction, and drug screening leveraging the databases of CTRPv2, PRISM and CMap. We used the Masson staining technique for histological assessments. All statistical evaluations were conducted using R software and GraphPad Prism 9, reinforcing the rigorous and comprehensive nature of our research approach. RESULTS Screening through inflammatory fibrosis revealed a reduction of extracellular matrix and cell adhesion molecules regulated by proteoglycans in UTUC compared with BC, making UTUC more metastasis-prone. We demonstrated that SDC1, LUM, VEGFA, WNT7B, and TIMP3, are critical in promoting UTUC metastasis. A risk model based on these five molecules can effectively predict the risk of UTUC metastasis and disease-free survival time. Given UTUC's unique molecular mechanisms distinct from BC, we discovered that UTUC patients could better mitigate the issue of poor prognosis associated with UTUC's easy metastasis through tyrosine kinase inhibitors (TKIs) alongside the conventional gemcitabine and cisplatin chemotherapy regimen. CONCLUSIONS The poor prognosis of UTUC because of its high metastatic propensity is intimately tied to inflammatory fibrosis induced by the accumulation of reactive oxygen species. The biological model constructed using the five molecules SDC1, LUM, VEGFA, WNT7B, and TIMP3 can effectively predict patient prognosis. UTUC patients require specialized treatments in addition to conventional regimens, with TKIs exhibiting significant potential.
Collapse
Affiliation(s)
- Keqiang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenlin Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guoqing Xie
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Budeng Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liang Song
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
4
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Litak J, Czyżewski W, Szymoniuk M, Sakwa L, Pasierb B, Litak J, Hoffman Z, Kamieniak P, Roliński J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel) 2022; 14:cancers14194599. [PMID: 36230523 PMCID: PMC9559304 DOI: 10.3390/cancers14194599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Our literature review aimed to describe the up-to-date knowledge about the molecular pathways and biomarkers engaged in the spine’s metastatic processes. Moreover, we described current data regarding bone-targeted treatment, the emerging targeted therapies, radiotherapy, and immunotherapy used for the treatment of spine metastases. We hope that knowledge comprehensively presented in our review will contribute to the development of novel drugs targeting specific biomarkers and pathways. The more we learn about the molecular aspects of cancer metastasis, the easier it will be to look for treatment methods that will allow us to precisely kill tumor cells. Abstract Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Thanks to continuous research, there appears more and more detailed knowledge about cancer and metastasis, but these transformations are extremely complicated, e.g., due to the complexity of reactions, the variety of places where they occur, or the participation of both tumor cells and host cells in these transitions. The right target points in tumor metastasis mechanisms are still being researched; that will help us in the proper diagnosis as well as in finding the right treatment. In this literature review, we described the current knowledge about the molecular pathways and biomarkers engaged in metastatic processes involving the spine. We also presented a current bone-targeted treatment for spine metastases and the emerging therapies targeting the discussed molecular mechanisms.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, Lekarska 4, 26-600 Radom, Poland
- Correspondence:
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
7
|
Wessels F, Schmitt M, Krieghoff-Henning E, Jutzi T, Worst TS, Waldbillig F, Neuberger M, Maron RC, Steeg M, Gaiser T, Hekler A, Utikal JS, von Kalle C, Fröhling S, Michel MS, Nuhn P, Brinker TJ. Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer. BJU Int 2021; 128:352-360. [PMID: 33706408 DOI: 10.1111/bju.15386] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors. PATIENTS AND METHODS Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status. RESULTS With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.68 (95% confidence interval [CI] 0.678-0.682) and a mean balanced accuracy of 61.37% (95% CI 60.05-62.69%) was achieved. The mean sensitivity and specificity was 53.09% (95% CI 49.77-56.41%) and 69.65% (95% CI 68.21-71.1%), respectively. These results were confirmed via cross-validation. The probability score for LNM prediction was significantly higher on image sections from N+ samples (mean [SD] N+ probability score 0.58 [0.17] vs 0.47 [0.15] N0 probability score, P = 0.002). In multivariable analysis, the probability score of the CNN (odds ratio [OR] 1.04 per percentage probability, 95% CI 1.02-1.08; P = 0.04) and lymphovascular invasion (OR 11.73, 95% CI 3.96-35.7; P < 0.001) proved to be independent predictors for LNM. CONCLUSION In our present study, CNN-based image analyses showed promising results as a potential novel low-cost method to extract relevant prognostic information directly from H&E histology to predict the LN status of patients with prostate cancer. Our ubiquitously available technique might contribute to an improved LN status prediction.
Collapse
Affiliation(s)
- Frederik Wessels
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Max Schmitt
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Krieghoff-Henning
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Jutzi
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas S Worst
- Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Frank Waldbillig
- Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Manuel Neuberger
- Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Roman C Maron
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Steeg
- Institute of Pathology, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Achim Hekler
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen S Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christof von Kalle
- Department of Clinical-Translational Sciences, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany
| | - Stefan Fröhling
- National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Maurice S Michel
- Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Philipp Nuhn
- Department of Urology and Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Inhibition of glypican-1 expression induces an activated fibroblast phenotype in a human bone marrow-derived stromal cell-line. Sci Rep 2021; 11:9262. [PMID: 33927256 PMCID: PMC8084937 DOI: 10.1038/s41598-021-88519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in the tumor microenvironment. CAFs orchestrate tumor-stromal interactions, and contribute to cancer cell growth, metastasis, extracellular matrix (ECM) remodeling, angiogenesis, immunomodulation, and chemoresistance. However, CAFs have not been successfully targeted for the treatment of cancer. The current study elucidates the significance of glypican-1 (GPC-1), a heparan sulfate proteoglycan, in regulating the activation of human bone marrow-derived stromal cells (BSCs) of fibroblast lineage (HS-5). GPC-1 inhibition changed HS-5 cellular and nuclear morphology, and increased cell migration and contractility. GPC-1 inhibition also increased pro-inflammatory signaling and CAF marker expression. GPC-1 induced an activated fibroblast phenotype when HS-5 cells were exposed to prostate cancer cell conditioned media (CCM). Further, treatment of human bone-derived prostate cancer cells (PC-3) with CCM from HS-5 cells exhibiting GPC-1 loss increased prostate cancer cell aggressiveness. Finally, GPC-1 was expressed in mouse tibia bone cells and present during bone loss induced by mouse prostate cancer cells in a murine prostate cancer bone model. These data demonstrate that GPC-1 partially regulates the intrinsic and extrinsic phenotype of human BSCs and transformation into activated fibroblasts, identify novel functions of GPC-1, and suggest that GPC-1 expression in BSCs exerts inhibitory paracrine effects on the prostate cancer cells. This supports the hypothesis that GPC-1 may be a novel pharmacological target for developing anti-CAF therapeutics to control cancer.
Collapse
|
9
|
Dao NV, Ercole F, Urquhart MC, Kaminskas LM, Nowell CJ, Davis TP, Sloan EK, Whittaker MR, Quinn JF. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model. Biomater Sci 2021; 9:835-846. [PMID: 33231231 DOI: 10.1039/d0bm01544j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The progression of cancer has been closely-linked with augmentation of cellular reactive oxygen species (ROS) levels and ROS-associated changes in the tumour microenvironment (TME), including alterations to the extracellular matrix and associated low drug uptake. Herein we report the application of a co-culture model to simulate the ROS based cell-cell interactions in the TME using fibroblasts and breast cancer cells, and describe how novel reactive polymers can be used to modulate those interactions. Under the co-culture conditions, both cell types exhibited modifications in behaviour, including significant overproduction of ROS in the cancer cells, and elevation of the collagen-1 secretion and stained actin filament intensity in the fibroblasts. To examine the potential of using reactive antioxidant polymers to intercept ROS communication and thereby manipulate the TME, we employed H2S-releasing macromolecular conjugates which have been previously demonstrated to mitigate ROS production in HEK cells. The specific conjugate used, mPEG-SSS-cholesteryl (T), significantly reduced ROS levels in co-cultured cancer cells by approximately 50%. This reduction was significantly greater than that observed with the other positive antioxidant controls. Exposure to T was also found to downregulate levels of collagen-1 in the co-cultured fibroblasts, while exhibiting less impact on cells in mono-culture. This would suggest a possible downstream effect of ROS-mitigation by T on stromal-tumour cell signalling. Since fibroblast-derived collagens modulate crucial steps in tumorigenesis, this ROS-associated effect could potentially be harnessed to slow cancer progression. The model may also be beneficial for interrogating the impact of antioxidants on naturally enhanced ROS levels, rather than relying on the application of exogenous oxidants to simulate elevated ROS levels.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Matthew C Urquhart
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia and Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC 3000, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. and Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Rinella L, Pizzo B, Frairia R, Delsedime L, Calleris G, Gontero P, Zunino V, Fortunati N, Arvat E, Catalano MG. Modulating tumor reactive stroma by extracorporeal shock waves to control prostate cancer progression. Prostate 2020; 80:1087-1096. [PMID: 32609927 DOI: 10.1002/pros.24037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prostate cancer is the second most common cancer worldwide. Tumor microenvironment is composed of activated fibroblasts, the so called carcinoma-associated fibroblasts (CAFs). They express high levels of α-smooth muscle actin (α-SMA) and type I collagen (COL1), and support proliferation and migration of tumor epithelial cells. Extracorporeal shock waves (ESWs), acoustic waves, are effective in the treatment of hypertrophic scars, due to their ability to modulate fibrosis. Based on this rationale, the study evaluated the effects of ESWs on CAF activation and the influence of ESW-treated CAFs on the growth and migration of epithelial prostatic carcinoma cells. METHODS Primary cultures of CAFs (n = 10) were prepared from tumors of patients undergoing surgery for high-risk prostate carcinoma. CAFs were treated with ESWs (energy levels: 0.32 mJ/mm2 , 1000 pulses; 0.59 mJ/mm2 , 250 pulses). After treatment, the messenger RNA and protein levels of the stromal activation markers α-SMA and COL1 were determined. Subsequently, two different stabilized cell lines (PC3 and DU145) of androgen-resistant prostate cancer were treated with the conditioned media produced by ESW-treated CAFs. At different times, viability and migration of PC3 and DU145 cells were evaluated. Viability was also assessed by coculture system using CAFs and PC3 or DU145 cells. RESULTS ESWs reduced gene expression and protein level of α-SMA and COL1 in CAFs. The treatment of PC3 and DU145 with conditioned media of ESW-treated CAFs determined a reduction of their growth and invasive potential. Coculture systems between ESW-treated CAFs and PC3 or DU145 cells confirmed the epithelial cell number reduction. CONCLUSIONS This in vitro study demonstrates for the first time that ESWs are able to modulate the activation of prostate CAFs in favor of a less "reactive" stroma, with consequent slowing of the growth and migration of prostate cancer epithelial cells. However, only further studies to be performed in vivo will confirm the possibility of using this new therapy in patients with prostate cancer.
Collapse
Affiliation(s)
- Letizia Rinella
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Pizzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Frairia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luisa Delsedime
- Department of Oncology, Pathology Unit, A.O.U., Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giorgio Calleris
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paolo Gontero
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Valentina Zunino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Fortunati
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
11
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
12
|
Li M, Nopparat J, Aguilar BJ, Chen YH, Zhang J, Du J, Ai X, Luo Y, Jiang Y, Boykin C, Lu Q. Intratumor δ-catenin heterogeneity driven by genomic rearrangement dictates growth factor dependent prostate cancer progression. Oncogene 2020; 39:4358-4374. [PMID: 32313227 PMCID: PMC10493073 DOI: 10.1038/s41388-020-1281-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
Only a small number of genes are bona fide oncogenes and tumor suppressors such as Ras, Myc, β-catenin, p53, and APC. However, targeting these cancer drivers frequently fail to demonstrate sustained cancer remission. Tumor heterogeneity and evolution contribute to cancer resistance and pose challenges for cancer therapy due to differential genomic rearrangement and expression driving distinct tumor responses to treatments. Here we report that intratumor heterogeneity of Wnt/β-catenin modulator δ-catenin controls individual cell behavior to promote cancer. The differential intratumor subcellular localization of δ-catenin mirrors its compartmentalization in prostate cancer xenograft cultures as result of mutation-rendered δ-catenin truncations. Wild-type and δ-catenin mutants displayed distinct protein interactomes that highlight rewiring of signal networks. Localization specific δ-catenin mutants influenced p120ctn-dependent Rho GTPase phosphorylation and shifted cells towards differential bFGF-responsive growth and motility, a known signal to bypass androgen receptor dependence. Mutant δ-catenin promoted Myc-induced prostate tumorigenesis while increasing bFGF-p38 MAP kinase signaling, β-catenin-HIF-1α expression, and the nuclear size. Therefore, intratumor δ-catenin heterogeneity originated from genetic remodeling promotes prostate cancer expansion towards androgen independent signaling, supporting a neomorphism model paradigm for targeting tumor progression.
Collapse
Affiliation(s)
- Mingchuan Li
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jongdee Nopparat
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Anatomy, Prince of Songkla University, Songkhla, Thailand
| | - Byron J. Aguilar
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Yan-hua Chen
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Xin Ai
- Dept. of Urology, PLA Army General Hospital, Beijing, China
| | - Yong Luo
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yongguang Jiang
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Christi Boykin
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, The Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| |
Collapse
|
13
|
Qu Q, Li Y, Fang X, Zhang L, Xue C, Ge X, Wang X, Jiang Y. Differentially expressed tRFs in CD5 positive relapsed & refractory diffuse large B cell lymphoma and the bioinformatic analysis for their potential clinical use. Biol Direct 2019; 14:23. [PMID: 31775867 PMCID: PMC6882323 DOI: 10.1186/s13062-019-0255-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 02/14/2023] Open
Abstract
Background Patients diagnosed as diffuse large B cell lymphoma (DLBCL) with CD5 positive normally have a worse outcome and poorly respond to the regulatory treatment strategy. Results We recently reported differently expressed tRFs and their potential target-genes of tRFs in patients with CD5+ R/R DLBCL. Differently expressed tRFs were detected by Illumina NextSeq instrument and the results were verified by quantitative real-time reverse transcription-PCR. tRF2Cancer database was searched to compared with the results. Further research was performed through bio-informatic analysis including gene ontology (GO) and pathway enrichment analyses, etc. A total of 308 tRFs were identified. Two sequences (AS-tDR-008946, AS-tDR-013492) were chosen for further investigated. Conclusions The results of Bioinformatics analysis revealed that the target genes including NEDD4L and UBA52 and several associated pathways including PI3K/AKT and MAPK/ERK might be involved in the development of CD5+ R/R DLBCL. Our preliminary study on the associated tRFs might provide a valuable measure to explore the pathogenesis and progression of CD5+ R/R DLBCL. Reviewers This article was reviewed by Zhen Qing Ye, Nagarajan Raju and Jin Zhuang Dou.
Collapse
Affiliation(s)
- Qingyuan Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Chao Xue
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
14
|
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 2018; 12:1308-1323. [PMID: 29808619 PMCID: PMC6068356 DOI: 10.1002/1878-0261.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer‐associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High‐grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR‐expressing CAF‐like cells. Testosterone (R1881) exposure did not affect CAF‐like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881‐exposed CAF‐like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP‐seq) was performed and motif search suggested that AR in CAF‐like cells bound the chromatin through AP‐1‐elements upon R1881 exposure, inducing enhancer‐mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF‐like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF‐like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.
Collapse
Affiliation(s)
- Bianca Cioni
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Monique H M Melis
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johan van Burgsteden
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Emma Hodel
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Daniele Spinozzi
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Klein JA, Meng L, Zaia J. Deep Sequencing of Complex Proteoglycans: A Novel Strategy for High Coverage and Site-specific Identification of Glycosaminoglycan-linked Peptides. Mol Cell Proteomics 2018; 17:1578-1590. [PMID: 29773674 DOI: 10.1074/mcp.ra118.000766] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Proteoglycans are distributed in all animal tissues and play critical, multifaceted, physiological roles. Expressed in a spatially and temporally regulated manner, these molecules regulate interactions among growth factors and cell surface receptors and play key roles in basement membranes and other extracellular matrices. Because of the high degree of glycosylation by glycosaminoglycan (GAG), N-glycan and mucin-type O-glycan classes, the peptide sequence coverage of complex proteoglycans is revealed poorly by standard mass spectrometry-based proteomics methods. As a result, there is little information concerning how proteoglycan site specific glycosylation changes during normal and pathological processes. Here, we developed a workflow to improve sequence coverage and identification of glycosylated peptides in proteoglycans. We applied this workflow to the small leucine-rich proteoglycan decorin and three hyalectan proteoglycans: neurocan, brevican, and aggrecan.We characterized glycosylation of these proteoglycans using LC-MS methods easily implemented on instruments widely used in proteomics laboratories. For decorin, we assigned the linker-glycosite and three N-glycosylation sites. For neurocan and brevican, we identified densely glycosylated mucin-like regions in the extended domains. For aggrecan, we identified 50 linker-glycosites and mucin-type O-glycosites in the extended region and N-glycosites in the globular domains, many of which are novel and have not been observed previously. Most importantly, we demonstrate an LC-MS and bioinformatics approach that will enable routine analysis of proteoglycan glycosylation from biological samples to assess their role in pathophysiology.
Collapse
Affiliation(s)
- Joshua A Klein
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry.,§Bioinformatics Program Boston University, Boston, Massachusetts 02118
| | - Le Meng
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry
| | - Joseph Zaia
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry; .,§Bioinformatics Program Boston University, Boston, Massachusetts 02118
| |
Collapse
|