1
|
Erin N, Akdeniz Ö. ADAM10 and Neprilysin level decreases in immune cells of mice bearing metastatic breast carcinoma: Possible role in cancer inflammatory response. Int Immunopharmacol 2024; 127:111384. [PMID: 38141405 DOI: 10.1016/j.intimp.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE AND DESIGN ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-ɣ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye.
| | - Özlem Akdeniz
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye
| |
Collapse
|
2
|
Sapoznikov A, Kozlovski S, Levi N, Feigelson SW, Regev O, Davidzohn N, Ben-Dor S, Haffner-Krausz R, Feldmesser E, Wigoda N, Petrovich-Kopitman E, Biton M, Alon R. Dendritic cell ICAM-1 strengthens synapses with CD8 T cells but is not required for their early differentiation. Cell Rep 2023; 42:112864. [PMID: 37494182 DOI: 10.1016/j.celrep.2023.112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts. Nevertheless, in the absence of these conjugates, CD8 lymphocyte proliferation and differentiation into functional cytotoxic T cells (CTLs) and skin homing effector lymphocytes takes place normally. Our results suggest that although CD8 T cell blasts engage in tight ICAM-1-dependent DC-T ISs, firm ISs are dispensable for TCR-triggered proliferation and differentiation into productive effector lymphocytes.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Wigoda
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Biton
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
4
|
Immune-Related Gene Profile in HIV-Infected Patients with Discordant Immune Response. IRANIAN BIOMEDICAL JOURNAL 2022; 26:485-91. [PMID: 36380676 PMCID: PMC9841224 DOI: 10.52547/ibj.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Background: In spite of many reports on persistent low CD4 T cell counts and change in immune-related gene expression level in patients with HIV infection, there is still uncertainty about significant association between gene expression level and HIV infection in patients with and without discordant immune response (DIR). The aim of this study was to compare the expression level of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes in HIV-1-positive patients with and without DIR. Methods Methods: In this study, 30 HIV-1-positive patients (15 patients with and 15 patients without DIR [control group]) were included. PBMCs of the patients were collected through density radient centrifugation with Ficoll-Hypaque. RNeasy Plus Mini kit was used to extract RNA. Relative expression levels of CD4, CCL5, IFN-γ, STAT1, APOBEC3G, CD45, and ICAM-1 genes were evaluated by real-time PCR. The data were analyzed using one-way ANOVA. Results Results: CD4 T cell counts were significantly lower in DIR patients than the control group (p < 0.01). While there was no significant difference in the relative expression levels of CD4, CCL5, IFN-γ, STAT1, CD45, and ICAM-1 between patients with DIR and control group, APOBEC3G expression level was significantly higher in the patients with DIR as compare to the control group (p < 0.01). Conclusion Conclusion: Our findings suggest a significantly higher APOBEC3G expression level in patients with DIR, suggesting the potential role of APOBEC3G in patients with immunological discordance besides its suppressing role in HIV-1 infection. Confirmation of this hypothesis requires further research.
Collapse
|
5
|
Pylaeva E, Korschunow G, Spyra I, Bordbari S, Siakaeva E, Ozel I, Domnich M, Squire A, Hasenberg A, Thangavelu K, Hussain T, Goetz M, Lang KS, Gunzer M, Hansen W, Buer J, Bankfalvi A, Lang S, Jablonska J. During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Rep 2022; 40:111171. [PMID: 35977505 DOI: 10.1016/j.celrep.2022.111171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/08/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Georg Korschunow
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Irem Ozel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Kruthika Thangavelu
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Moritz Goetz
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, 44139 Dortmund, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Düsseldorf/Essen, 45147 Essen, Germany.
| |
Collapse
|
6
|
Hussain T, Domnich M, Bordbari S, Pylaeva E, Siakaeva E, Spyra I, Ozel I, Droege F, Squire A, Lienenklaus S, Sutter K, Hasenberg A, Gunzer M, Lang S, Jablonska J. IFNAR1 Deficiency Impairs Immunostimulatory Properties of Neutrophils in Tumor-Draining Lymph Nodes. Front Immunol 2022; 13:878959. [PMID: 35833131 PMCID: PMC9271705 DOI: 10.3389/fimmu.2022.878959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are the first organs where the metastatic spread of different types of cancer, including head and neck cancer (HNC), occurs and have therefore high prognostic relevance. Moreover, first anti-cancer immune responses have been shown to be initiated in such LNs via tumor-educated myeloid cells. Among myeloid cells present in TDLNs, neutrophils represent a valuable population and considerably participate in the activation of effector lymphocytes there. Tumor-supportive or tumor-inhibiting activity of neutrophils strongly depends on the surrounding microenvironment. Thus, type I interferon (IFN) availability has been shown to prime anti-tumor activity of these cells. In accordance, mice deficient in type I IFNs show elevated tumor growth and metastatic spread, accompanied by the pro-tumoral neutrophil bias. To reveal the mechanism responsible for this phenomenon, we have studied here the influence of defective type I IFN signaling on the immunoregulatory activity of neutrophils in TDLNs. Live imaging of such LNs was performed using two-photon microscopy in a transplantable murine HNC model. CatchupIVM-red and Ifnar1-/- (type I IFN receptor- deficient) CatchupIVM-red mice were used to visualize neutrophils and to assess their interaction with T-cells in vivo. We have evaluated spatiotemporal patterns of neutrophil/T-cell interactions in LNs in the context of type I interferon receptor (IFNAR1) availability in tumor-free and tumor-bearing animals. Moreover, phenotypic and functional analyses were performed to further characterize the mechanisms regulating neutrophil immunoregulatory capacity. We demonstrated that inactive IFNAR1 leads to elevated accumulation of neutrophils in TDLNs. However, these neutrophils show significantly impaired capacity to interact with and to stimulate T-cells. As a result, a significant reduction of contacts between neutrophils and T lymphocytes is observed, with further impairment of T-cell proliferation and activation. This possibly contributes to the enhanced tumor growth in Ifnar1-/- mice. In agreement with this, IFNAR1-independent activation of downstream IFN signaling using IFN-λ improved the immunostimulatory capacity of neutrophils in TDLNs and contributed to the suppression of tumor growth. Our results suggest that functional type I IFN signaling is essential for neutrophil immunostimulatory capacity and that stimulation of this signaling may provide a therapeutic opportunity in head and neck cancer patients.
Collapse
Affiliation(s)
- Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Irem Ozel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
- Biospectroscopy Research Department, Institut für Analytische Wissenschaften (ISAS) e.V., Dortmund, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
- *Correspondence: Jadwiga Jablonska,
| |
Collapse
|
7
|
Leithner A, Altenburger LM, Hauschild R, Assen FP, Rottner K, Stradal TEB, Diz-Muñoz A, Stein JV, Sixt M. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J Cell Biol 2021; 220:211749. [PMID: 33533935 PMCID: PMC7863705 DOI: 10.1083/jcb.202006081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.
Collapse
Affiliation(s)
- Alexander Leithner
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Frank P Assen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Klemens Rottner
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
8
|
Gérard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol 2021; 42:706-722. [PMID: 34266767 PMCID: PMC10734378 DOI: 10.1016/j.it.2021.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.
Collapse
Affiliation(s)
- Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Claudia Kemper
- National Heart, Lung and Blood Institute (NHLBI), National Institute of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ronen Alon
- The Weizmann Institute of Science, Rehovot, Israel
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
9
|
Prins MMC, van Roest M, Vermeulen JLM, Tjabringa GS, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Applicability of different cell line-derived dendritic cell-like cells in autophagy research. J Immunol Methods 2021; 497:113106. [PMID: 34324891 DOI: 10.1016/j.jim.2021.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Immortalized cell lines have been long used as substitute for ex vivo murine and human material, but exhibit features that are not found in healthy tissue. True human dendritic cells (DC) cannot be cultured or passaged as opposed to immortalized cell lines. Research in the fields of immunogenic responses and immunotolerance in DCs has increased over the last decade. Autophagy has gained interest in these fields as well, and has been researched extensively in many other cell types as well. Here we have studied the applicability of cell line-derived dendritic cell-like cells of six myeloid cell lines aimed at research focussed on autophagy. METHODS Six myeloid leukaemia cell lines were differentiated towards cell line-derived dendritic cell-like cells (cd-DC) using GM-CSF, IL-4, Ionomycine and PMA: HL60, KG1, MM6, MV-4-11, THP1 and U937. Autophagy was modulated using Rapamycin, Bafilomycin A1 and 3MA. Cell lines were genotyped for autophagy-related SNPs using RFLP. Marker expression was determined with FACS analysis and cytokine profiles were determined using Human Cytometric Bead Assay. Antigen uptake was assessed using Fluoresbrite microspheres. RESULTS AND DISCUSSION All researched cell lines harboured SNPs in the autophagy pathways. MM6 and THP1 derived cd-DCs resembled monocyte-derived DCs (moDC) most closely in marker expression, cytokine profiles and autophagy response. The HL60 and U937 cell lines proved least suitable for autophagy-related dendritic cell research. CONCLUSION The genetic background of cell lines should be taken into account upon studying (the effects of) autophagy in any cell line. Although none of the studied cell lines recapitulate the full spectrum of DC characteristics, MM6 and THP1 derived cd-DCs are most suitable for autophagy-related research in dendritic cells.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - G Sandra Tjabringa
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Wu WC, Song SJ, Zhang Y, Li X. Role of Extracellular Vesicles in Autoimmune Pathogenesis. Front Immunol 2020; 11:579043. [PMID: 33072123 PMCID: PMC7538611 DOI: 10.3389/fimmu.2020.579043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are conditions that emerge from abnormal immune responses to natural parts of the body. Extracellular vesicles (EVs) are membranous structures found in almost all types of cells. Because EVs often transport “cargo” between cells, their ability to crosstalk may be an important communication pathway within the body. The pathophysiological role of EVs is increasingly recognized in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Type 1 diabetes, and autoimmune thyroid disease. EVs are considered as biomarkers of these diseases. This article outlines existing knowledge on the biogenesis of EVs, their role as messegers in cellular communication and the function in T/B cell differentiation and maturation, and focusing on their potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Haghayegh Jahromi N, Marchetti L, Moalli F, Duc D, Basso C, Tardent H, Kaba E, Deutsch U, Pot C, Sallusto F, Stein JV, Engelhardt B. Intercellular Adhesion Molecule-1 (ICAM-1) and ICAM-2 Differentially Contribute to Peripheral Activation and CNS Entry of Autoaggressive Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 10:3056. [PMID: 31993059 PMCID: PMC6970977 DOI: 10.3389/fimmu.2019.03056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), myelin-specific T cells are activated in the periphery and differentiate in T helper (Th) 1 and Th17 effector cells, which cross the blood-brain barrier (BBB) to reach the central nervous system (CNS), where they induce neuroinflammation. Here, we explored the role of intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in the activation of naïve myelin-specific T cells and in the subsequent migration of differentiated encephalitogenic Th1 and Th17 cells across the BBB in vitro and in vivo. While on antigen-presenting cells ICAM-1, but not ICAM-2 was required for the activation of naïve CD4+ T cells, endothelial ICAM-1 and ICAM-2 mediated both Th1 and Th17 cell migration across the BBB. ICAM-1/-2-deficient mice developed ameliorated typical and atypical EAE transferred by encephalitogenic Th1 and Th17 cells, respectively. Our study underscores important yet cell-specific contributions for ICAM-1 and ICAM-2 in EAE pathogenesis.
Collapse
Affiliation(s)
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Heidi Tardent
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|