1
|
Vyhlídalová B, Ondrová K, Zůvalová I. Dietary monoterpenoids and human health: Unlocking the potential for therapeutic use. Biochimie 2024:S0300-9084(24)00202-5. [PMID: 39260556 DOI: 10.1016/j.biochi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Han L, Wang S, Li J, Zhao L, Zhou H. Urinary exosomes from patients with diabetic kidney disease induced podocyte apoptosis via microRNA-145-5p/Srgap2 and the RhoA/ROCK pathway. Exp Mol Pathol 2023; 134:104877. [PMID: 37952894 DOI: 10.1016/j.yexmp.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease without early diagnostic and specific therapeutic approaches. Podocyte apoptosis and loss play important roles in the pathological process of DKD. This study aimed to explore whether urinary exosomes from type 2 diabetes patients with DKD could induce podocyte apoptosis and the underlying pathological mechanisms. The exosomes were isolated from the urine samples of patients with DKD (DKD-Exo). Later, they were taken up and internalized by MPC5 cells. MPC5 cells were co-cultured with DKD-Exo (45 μg/ml) for 24 h in the presence or absence of microRNA-145-5p (miR-145-5p) inhibitor, fasudil and pcDNA-Srgap2 transfection. MiR-145-5p and Srgap2 expression was evaluated using real-time quantitative PCR. The protein levels of Srgap2, Bcl-2, Bax, and cleaved caspase-3, as well as ROCK activity were determined using Western blotting. Cell apoptosis was measured using flow cytometry and the TUNEL assay. miR-145-5p expression in MPC5 cells exposed to DKD-Exo was markedly upregulated. miR-145-5p negatively regulated Srgap2 levels. Exposure of MPC5 cells to DKD-Exo reduced Srgap2 expression and activated ROCK, which was partly reversed by the presence of the miR-145-5p inhibitor or Srgap2 overexpression. The apoptosis of MPC5 cells exposed to DKD-Exo increased significantly, which was counteracted by the addition of the miR-145-5p inhibitor and fasudil. The results showed that urinary exosomal miR-145-5p from patients with DKD induced podocyte apoptosis by inhibiting Srgap2 and activating the RhoA/ROCK pathway, suggesting that urinary exosomal miR-145-5p is involved in the pathological process of DKD and could become a noninvasive diagnostic biomarker for DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Endocrinology, the First Central Hospital of Baoding, Baoding 071000, China
| | - Shenghai Wang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Juan Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lulu Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
3
|
Sousa LDR, Viana NR, Coêlho AG, Barbosa CDO, Barros DSL, Martins MDCDCE, Ramos RM, Arcanjo DDR. Use of Monoterpenes as Potential Therapeutics in Diabetes Mellitus: A Prospective Review. Adv Pharmacol Pharm Sci 2023; 2023:1512974. [PMID: 38029230 PMCID: PMC10665111 DOI: 10.1155/2023/1512974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/06/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Monoterpenes are secondary metabolites of plants belonging to the terpenoid class of natural products. They are the most abundant components of essential oils that are generally considered to have various pharmacological properties. These compounds are reported to have antidiabetic effects in recent years. Due to nature's complex biosynthetic machinery, they also exhibit a reasonable degree of structural complexity/diversity for further analysis in structure-activity studies. Therefore, monoterpenes as antidiabetic agents have been investigated by recent in vitro and in vivo studies extensively reported in the scientific literature and claimed by patent documents. The purpose of this survey is to provide a comprehensive and prospective review concerning the potential applications of monoterpenes in the treatment of diabetes. The data for this research were collected through the specialized databases PubMed, Scopus, Web of Science, and ScienceDirect between the years 2014 and 2022, as well as the patent databases EPO, WIPO, and USPTO. The research used 76 articles published in the leading journals in the field. The main effect observed was the antidiabetic activity of monoterpenes. This review showed that monoterpenes can be considered promising agents for prevention and/or treatment of diabetes as well as have a marked pharmaceutical potential for the development of bioproducts for therapeutics applications.
Collapse
Affiliation(s)
- Leonardo da Rocha Sousa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
| | - Nildomar Ribeiro Viana
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Angélica Gomes Coêlho
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Celma de Oliveira Barbosa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | | | - Maria do Carmo de Carvalho e Martins
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Ricardo Martins Ramos
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
- LaPeSI–Information Systems Research Laboratory, Department of Information, Environment, Health and Food Production, Federal Institute of Piaui, Teresina, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
4
|
Hasan IH, Badr A, Almalki H, Alhindi A, Mostafa HS. Podocin, mTOR, and CHOP dysregulation contributes to nephrotoxicity induced of lipopolysaccharide/diclofenac combination in rats: Curcumin and silymarin could afford protective effect. Life Sci 2023; 330:121996. [PMID: 37536613 DOI: 10.1016/j.lfs.2023.121996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
AIM Sepsis is a common cause of acute kidney injury (AKI). Lipopolysaccharides (LPS) are the main gram-negative bacterial cell wall component with a well-documented inflammatory impact. Diclofenac (DIC) is a non-steroidal anti-inflammatory drug with a potential nephrotoxic effect. Curcumin (CUR) and silymarin (SY) are natural products with a wide range of pharmacological activities, including antioxidant and anti-inflammatory ones. The objective of this study was to examine the protective impact of CUR and SY against kidney damage induced by LPS/DIC co-exposure. MATERIALS AND METHODS Four groups of rats were used; control; LPS/DIC, LPS/DIC + CUR, and LPS/DIC + SY group. LPS/DIC combination induced renal injury at an LPS dose much lower than a nephrotoxic one. KEY FINDING Nephrotoxicity was confirmed by histopathological examination and significant elevation of renal function markers. LPS/DIC induced oxidative stress in renal tissues, evidenced by decreasing reduced glutathione and superoxide dismutase, and increasing lipid peroxidation. Inflammatory response of LPS/DIC was associated with a significant increase of renal IL-1β and TNF-α. Treatment with either CUR or SY shifted measured parameters to the opposite side. Moreover, LPS/DIC exposure was associated with upregulation of mTOR and endoplasmic reticulum stress protein (CHOP) and downregulation of podocin These effects were accompanied by reduced gene expression of cystatin C and KIM-1. CUR and SY ameliorated LPS/DIC effect on the aforementioned genes and protein significantly. SIGNIFICANCE This study confirms the potential nephrotoxicity; mechanisms include upregulation of mTOR, CHOP, cystatin C, and KIM-1 and downregulation of podocin. Moreover, both CUR and SY are promising nephroprotective products against LPS/DIC co-exposure.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Haneen Almalki
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Alanoud Alhindi
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Hesham S Mostafa
- Statistics Deanship of Scientific Research, College of Humanities and Social Sciences, King Saud University, P.O. Box 2456, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Saleh MA, Shaaban AA, Talaat IM, Elmougy A, Adra SF, Ahmad F, Qaisar R, Elmoselhi AB, Abu-Gharbieh E, El-Huneidi W, Eladl MA, Shehatou G, Kafl HE. RhoA/ROCK inhibition attenuates endothelin-1-induced elevated glomerular permeability to albumin, inflammation, and fibrosis. Life Sci 2023; 323:121687. [PMID: 37030613 DOI: 10.1016/j.lfs.2023.121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Iman M Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Atef Elmougy
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Saryia F Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - George Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Huang C, Zhou Y, Huang H, Zheng Y, Kong L, Zhang H, Zhang Y, Wang H, Yang M, Xu X, Chen B. Islet Transplantation Reverses Podocyte Injury in Diabetic Nephropathy or Induced by High Glucose via Inhibiting RhoA/ROCK/NF- κB Signaling Pathway. J Diabetes Res 2021; 2021:9570405. [PMID: 33778085 PMCID: PMC7969114 DOI: 10.1155/2021/9570405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-κB signaling pathway is related to podocyte restoration after IT. METHODS A mouse model of diabetic nephropathy was established in vivo using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes in vitro to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques. RESULTS Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions. CONCLUSIONS Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
Collapse
Affiliation(s)
- Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Mei Yang
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Xiaona Xu
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
7
|
Wang Q, Tian X, Zhou W, Wang Y, Zhao H, Li J, Zhou X, Zhang H, Zhao T, Li P. Protective Role of Tangshen Formula on the Progression of Renal Damage in db/db Mice by TRPC6/Talin1 Pathway in Podocytes. J Diabetes Res 2020; 2020:3634974. [PMID: 33015191 PMCID: PMC7519445 DOI: 10.1155/2020/3634974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/11/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Tangshen Formula (TSF) is a Chinese Medicine formula that has been reported to alleviate proteinuria and protect renal function in humans and animals with diabetic kidney disease (DKD). However, little is known about its mechanism in improving proteinuria. The dysregulation of podocyte cell-matrix adhesion has been demonstrated to play an important role in the pathogenesis and progression of proteinuric kidney diseases including DKD. In the present study, the underlying protective mechanism of TSF on podocytes was investigated using the murine model of type 2 DKD db/db mice in vivo and advanced glycation end products (AGEs)-stimulated primary mice podocytes in vitro. Results revealed that TSF treatment could significantly mitigate reduction of podocyte numbers and foot process effacement, reduce proteinuria, and protect renal function in db/db mice. There was a significant increase in expression of transient receptor potential canonical channel 6 (TRPC6) and a decrease in expression of talin1 in podocytes of db/db mice. The results of AGEs-stimulated primary mice podocytes showed increased cell migration and actin-cytoskeleton rearrangement. Moreover, primary mice podocytes stimulated by AGEs displayed an increase in TRPC6-dependent Ca2+ influx, a loss of talin1, and translocation of nuclear factor of activated T cell (NFATC) 2. These dysregulations in mice primary podocytes stimulated by AGEs could be significantly attenuated after TSF treatment. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC6 agonist, blocked the protective role of TSF on podocyte cell-matrix adherence. In conclusion, TSF could protect podocytes from injury and reduce proteinuria in DKD, which may be mediated by the regulation of the TRPC6/Talin1 pathway in podocytes.
Collapse
Affiliation(s)
- Qian Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei'e Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jialin Li
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefeng Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
8
|
Xu HC, Wu B, Ma YM, Xu H, Shen ZH, Chen S. Hederacoside-C protects against AGEs-induced ECM degradation in mice chondrocytes. Int Immunopharmacol 2020; 84:106579. [PMID: 32413742 DOI: 10.1016/j.intimp.2020.106579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Hederacoside-C (HDC), a natural compound extracted from the leaves of Hedera helix with inflammation modulatory properties in variety of disorders. In this study, we investigated the latent mechanism of HDC in alleviating of the progress of OA in vitro experiment. The results showed that HDC pretreatment suppressed the advanced glycation end-products (AGEs) induced over-regulation of ROS level and inflammatory factors. Moreover, HDC also downregulate the degradation of ECM induced by AGEs. Mechanistically, the HDC suppressed NF-κB signaling pathway in chondrocyte. To sum up, this study indicated HDC possessed a new potential therapeutic option in osteoarthritis.
Collapse
Affiliation(s)
- Hai-Chao Xu
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Bin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yi-Ming Ma
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Hao Xu
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| | - Zhong-Hai Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Sheng Chen
- Department of Orthopaedics, Shaoxing Second Hospital, Shaoxing, China
| |
Collapse
|