1
|
Lin YW, Wen YC, Lin CY, Hsiao CH, Ho KH, Huang HC, Chang LC, Wang SS, Yang SF, Chien MH. Genetic variants of ADAM9 as potential predictors for biochemical recurrence in prostate cancer patients after receiving a radical prostatectomy. Int J Med Sci 2024; 21:2934-2942. [PMID: 39628685 PMCID: PMC11610326 DOI: 10.7150/ijms.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
A disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) functions as a membranous bridge, forming cell-cell and cell-matrix connections that regulate tumor aggressiveness in various cancer types, including prostate cancer (PCa). Elevated ADAM9 levels in PCa were identified as a prognostic marker for biochemical recurrence (BCR) in patients who had undergone a radical prostatectomy (RP). However, impacts of genetic variants of ADAM9 on clinicopathological development and BCR remain unclear. Herein, we recruited 702 patients with PCa to evaluate associations of single-nucleotide polymorphisms (SNPs) of ADAM9 with the risk of BCR and clinicopathological development. We genotyped four loci of ADAM9 SNPs located in the promoter and intron regions using a TaqMan allelic discrimination assay, including rs10105311 (C/T), rs7006414 (T/C), rs6474526 (T/G), and rs78451751 (T/C) in 702 Taiwanese PCa patients. Our results showed that the risk of postoperative BCR was 1.508-fold higher in patients carrying the T/C genotype in ADAM9 rs7006414 compared to those with the homozygous T/T genotype, a phenomenon more pronounced in younger PCa patients (aged ≤ 65 years). Furthermore, patients with at least one polymorphic G allele in ADAM9 rs6474526 had a 2.016-fold increased risk of developing an advanced clinical primary tumor stage, particularly in a subpopulation without BCR. Clinical observations from the Genotype-Tissue Expression (GTEx) database showed increased ADAM9 expression in whole blood tissues among individuals carrying the polymorphic C allele of rs7006414 and the G allele of rs6474526. Additionally, data from The Cancer Genome Atlas indicated that elevated ADAM9 levels were observed in PCa tissues compared to corresponding matched normal tissues. Our findings suggest that the rs7006414 and rs6474526 genetic variants of ADAM9 may influence ADAM9 expression and are associated with BCR and clinicopathological development in PCa patients after an RP.
Collapse
Affiliation(s)
- Yung-Wei Lin
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia- Yen Lin
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiang-Ching Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Gao H, Qiu Y, Zheng X, Xu T, Liu G. Revealing the mechanisms of RAC3 in tumor aggressiveness, the immunotherapy response, and drug resistance in bladder cancer. Front Oncol 2024; 14:1466319. [PMID: 39351351 PMCID: PMC11441374 DOI: 10.3389/fonc.2024.1466319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Bladder cancer (BLCA) is a prevalent urinary tract malignancy with a high propensity for recurrence and chemoresistance. The molecular mechanisms underlying its progression and response to therapy have not been fully elucidated. Methods We conducted a multifaceted analysis, integrating immunohistochemical (IHC) staining, bioinformatics evaluation using TCGA and CCLE databases, and in vitro assays using the BLCA cell lines 5637 and T24. RAC3 expression was assessed relative to clinical and pathological features. Functional enrichment analyses and gene set enrichment analysis (GSEA) were performed to identify associated biological processes and pathways. The impacts of RAC3 on cell proliferation, migration, invasion, and the immune microenvironment were evaluated using siRNA knockdown, CCK-8, Transwell, wound healing and colony formation assays. Results Elevated RAC3 expression was significantly correlated with an advanced tumor stage, lymph node metastasis, and poor prognosis for BLCA patients. The functional enrichment analysis implicated RAC3 in immune cell infiltration and immune checkpoint mechanisms. Notably, RAC3 knockdown significantly reduced the proliferative, migratory, and invasive capabilities of BLCA cells. These effects were reversed by the overexpression of RAC3. Additionally, RAC3 expression was linked to chemoresistance, with high RAC3 expression predicting resistance to certain therapeutic agents. The TIDE algorithm indicated that RAC3 expression could be a predictive biomarker for the immunotherapy response. Conclusion RAC3 was identified as a potential therapeutic target and biomarker of BLCA, as its expression significantly influenced tumor progression, the immune response, and chemosensitivity. Targeting RAC3 may provide a novel strategy for the management of BLCA, particularly for patients resistant to conventional therapies. Further research is essential to elucidate the detailed mechanisms of RAC3 in BLCA and explore its clinical application in precision medicine.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanru Qiu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xueqin Zheng
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guangjian Liu
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Jotatsu Y, Sung SY, Wu MH, Takeda S, Hirata Y, Maeda K, Fang SB, Chen KC, Shigemura K. An Antibody of the Secreted Isoform of Disintegrin and Metalloprotease 9 (sADAM9) Inhibits Epithelial-Mesenchymal Transition and Migration of Prostate Cancer Cell Lines. Int J Mol Sci 2024; 25:6646. [PMID: 38928352 PMCID: PMC11203924 DOI: 10.3390/ijms25126646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer (PC) is the most common cancer diagnosed in men worldwide. Currently, castration-resistant prostate cancer (CRPC), which is resistant to androgen deprivation therapy, has a poor prognosis and is a therapeutic problem. We investigated the antitumor effects on PC of an antibody neutralizing secreted disintegrin and metalloproteinase domain-containing protein 9 (sADAM9), which is a blood-soluble form. We performed proliferation assays, wound healing assays, invasion assays, Western blot (WB), and an in vivo study in which a sADAM9 neutralizing antibody was administered intratumorally to PC-bearing mice. In invasion assays, the sADAM9 neutralizing antibody significantly inhibited invasion in all cell lines (TRAMP-C2: p = 0.00776, LNCaP: p = 0.000914, PC-3: p = 0.0327, and DU145: p = 0.0254). We examined epithelial-mesenchymal transition (EMT) markers, one of the metastatic mechanisms, in WB and showed downregulation of Slug in TRAMP-C2, LNCaP, and DU145 and upregulation of E-cadherin in TRAMP-C2 and PC-3 by sADAM9 neutralization. In mouse experiments, the sADAM9 neutralizing antibody significantly suppressed tumor growth compared to controls (1.68-fold in TRAMP-C2, 1.89-fold in LNCaP, and 2.67-fold in PC-3). These results suggested that the sADAM9 neutralizing antibody inhibits invasion, migration, and tumor growth in PC. Previous studies examined the anti-tumor effect of knockdown of total ADAM9 or sADAM9, but this study used the new technology of neutralizing antibodies for sADAM9. This may be novel because there was no animal study using a neutralizing antibody for sADAM9 to see the relationship between ADAM9 expression and prostate cancer.
Collapse
Affiliation(s)
- Yura Jotatsu
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (Y.J.); (Y.H.)
| | - Shain-Ying Sung
- International Ph.D. Program for Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei 11031, Taiwan (M.-H.W.)
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei 110, Taiwan
| | - Ming-Heng Wu
- International Ph.D. Program for Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei 11031, Taiwan (M.-H.W.)
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei 110, Taiwan
| | - Shunya Takeda
- Department of Medical Device Engineering, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Yuto Hirata
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (Y.J.); (Y.H.)
| | - Koki Maeda
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City 23561, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Road, Taipei 235, Taiwan;
| | - Katsumi Shigemura
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
4
|
Hosseinpour-Soleimani F, Salmasi Z, Ghasemi Y, Tajbakhsh A, Savardashtaki A. MicroRNAs and proteolytic cleavage of receptors in cancers: A comprehensive review of regulatory interactions and therapeutic implications. Heliyon 2024; 10:e28167. [PMID: 38560206 PMCID: PMC10979173 DOI: 10.1016/j.heliyon.2024.e28167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
- Infertility Research Center, Shiraz University Med Ical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
İlhan A, Golestani S, Shafagh SG, Asadi F, Daneshdoust D, Al-Naqeeb BZT, Nemati MM, Khalatbari F, Yaseri AF. The dual role of microRNA (miR)-20b in cancers: Friend or foe? Cell Commun Signal 2023; 21:26. [PMID: 36717861 PMCID: PMC9885628 DOI: 10.1186/s12964-022-01019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs, as non-coding transcripts, modulate gene expression through RNA silencing under normal physiological conditions. Their aberrant expression has strongly associated with tumorigenesis and cancer development. MiR-20b is one of the crucial miRNAs that regulate essential biological processes such as cell proliferation, apoptosis, autophagy, and migration. Deregulated levels of miR-20b contribute to the early- and advanced stages of cancer. On the other hand, investigations emphasize the tumor suppressor ability of miR-20b. High-throughput strategies are developed to identify miR-20b potential targets, providing the proper insight into its molecular mechanism of action. Moreover, accumulated results suggest that miR-20b exerts its effects through diverse signaling pathways, including PI3K/AKT/mTOR and ERK axes. Restoration of the altered expression levels of miR-20b induces cell apoptosis and reduces invasion and migration. Further, miR-20b can be used as a biomarker in cancer. The current comprehensive review could lead to a better understanding of the miR-20b in either tumorigenesis or tumor regression that may open new avenues for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Ahmet İlhan
- grid.98622.370000 0001 2271 3229Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Shayan Golestani
- grid.411757.10000 0004 1755 5416Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Seyyed Ghavam Shafagh
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asadi
- grid.488474.30000 0004 0494 1414Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Danyal Daneshdoust
- grid.411495.c0000 0004 0421 4102School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammed Mahdi Nemati
- grid.412763.50000 0004 0442 8645Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fateme Khalatbari
- grid.411768.d0000 0004 1756 1744Department of Pathology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Fakhre Yaseri
- grid.412606.70000 0004 0405 433XDepartment of Genetic, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Liu Y, Yi H, Fang K, Bao Y, Li X. Trends in accessibility of negotiated targeted anti-cancer medicines in Nanjing, China: An interrupted time series analysis. Front Public Health 2022; 10:942638. [PMID: 35937254 PMCID: PMC9353396 DOI: 10.3389/fpubh.2022.942638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background In order to establish a long-term strategy for bearing the costs of anti-cancer drugs, the state had organized five rounds of national-level pricing negotiations and introduced the National Health Insurance Coverage (NHIC) policy since 2016. In addition, the National Healthcare Security Administration (NHSA) introduced the volume-based purchasing (VBP) pilot program to Nanjing in September 2019. Taking non-small cell lung cancer as an example, the aim of the study was to verify whether national pricing negotiations, the NHIC policy and the VBP pilot program had a positive impact on the accessibility of three targeted anti-cancer drugs. Methods Based on the hospital procurement data, interrupted time series (ITS) design was used to analyze the effect of the health policy on the accessibility and affordability of gefitinib, bevacizumab and recombinant human endostatin from January 2013 to December 2020 in Nanjing, China. Results The DDDs of the three drugs increased significantly after the policy implementation (P < 0.001, P < 0.001, P = 0.008). The trend of DDDc showed a significant decrease (P < 0.001, P < 0.001, P < 0.001). The mean availability of these drugs before the national pricing negotiation was <30% in the surveyed hospitals, and increased significantly to 60.33% after 2020 (P < 0.001, P = 0.001, P < 0.001). The affordability of these drugs has also increased every year after the implementation of the insurance coverage policy. The financial burden is higher for the rural patients compared with the urban patients, although the gap is narrowing. Conclusion The accessibility of targeted anti-cancer drugs has increased significantly after the implementation of centralized prices, the NHIC policy and the VBP pilot program, and has shown sustained long-term growth. Multi-pronged supplementary measures and policy approaches by multiple stakeholders will facilitate equitable access to effective and affordable anti-cancer drugs.
Collapse
Affiliation(s)
- Yanyan Liu
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- School of Health Policy and Management, Nanjing Medical University, Nanjing, China
| | - Huining Yi
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Kexin Fang
- Department of Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuwen Bao
- School of Health Policy and Management, Nanjing Medical University, Nanjing, China
| | - Xin Li
- School of Health Policy and Management, Nanjing Medical University, Nanjing, China
- Department of Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Łukaszewicz-Zając M, Dulewicz M, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family: Their Significance in Malignant Tumors of the Central Nervous System (CNS). Int J Mol Sci 2021; 22:ijms221910378. [PMID: 34638718 PMCID: PMC8508774 DOI: 10.3390/ijms221910378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the considerable advances in diagnostic methods in medicine, central nervous system (CNS) tumors, particularly the most common ones-gliomas-remain incurable, with similar incidence rates and mortality. A growing body of literature has revealed that degradation of the extracellular matrix by matrix metalloproteinases (MMPs) might be involved in the pathogenesis of CNS tumors. However, the subfamily of MMPs, known as disintegrin and metalloproteinase (ADAM) proteins are unique due to both adhesive and proteolytic activities. The objective of our review is to present the role of ADAMs in CNS tumors, particularly their involvement in the development of malignant gliomas. Moreover, we focus on the diagnostic and prognostic significance of selected ADAMs in patients with these neoplasms. It has been proven that ADAM12, ADAMTS4 and 5 are implicated in the proliferation and invasion of glioma cells. In addition, ADAM8 and ADAM19 are correlated with the invasive activity of glioma cells and unfavorable survival, while ADAM9, -10 and -17 are associated with tumor grade and histological type of gliomas and can be used as prognostic factors. In conclusion, several ADAMs might serve as potential diagnostic and prognostic biomarkers as well as therapeutic targets for malignant CNS tumors. However, future research on ADAMs biology should be performed to elucidate new strategies for tumor diagnosis and treatment of patients with these malignancies.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-8318785; Fax: +48-85-8318585
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland;
| |
Collapse
|