1
|
Li Y, Bai H, Liu W, Zhou W, Gu H, Zhao P, Zhu M, Li Y, Yan X, Zhao N, Huang X. Intergenerational epigenetic inheritance mediated by MYS-2/MOF in the pathogenesis of Alzheimer's disease. iScience 2024; 27:110588. [PMID: 39220410 PMCID: PMC11363564 DOI: 10.1016/j.isci.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.
Collapse
Affiliation(s)
- Yuhong Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Hua Bai
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Wenwen Liu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Huan Gu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Peiji Zhao
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Man Zhu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Yixin Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xinyi Yan
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Xiaowei Huang
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Li Y, Huang H, Zhu M, Bai H, Huang X. Roles of the MYST Family in the Pathogenesis of Alzheimer's Disease via Histone or Non-histone Acetylation. Aging Dis 2021; 12:132-142. [PMID: 33532133 PMCID: PMC7801277 DOI: 10.14336/ad.2020.0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/29/2020] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a major cause of death among elderly individuals. The etiology of AD involves a combination of genetic, environmental, and lifestyle factors. A number of epigenetic alterations in AD have recently been reported; for example, studies have found an increase in histone acetylation in patients with AD and the protective function of histone deacetylase inhibitors. The histone acetylases in the MYST family are involved in a number of key nuclear processes, such as gene-specific transcriptional regulation, DNA replication, and DNA damage response. Therefore, it is not surprising that they contribute to epigenetic regulation as an intermediary between genetic and environmental factors. MYST proteins also exert acetylation activity on non-histone proteins that are closely associated with the pathogenesis of AD. In this review, we summarized the current understanding of the roles of MYST acetyltransferases in physiological functions and pathological processes related to AD. Additionally, using published RNA-seq, ChIP-seq, and ChIP-chip data, we identified enriched pathways to further evaluate the correlation between MYST and AD. The recent research described in this review supports the importance of epigenetic modifications and the MYST family in AD, providing a basis for future functional studies.
Collapse
Affiliation(s)
- Yuhong Li
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,2Yunnan Institute of Tropical Crops, Jinghong, China
| | - Hui Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Man Zhu
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Hua Bai
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,3College of Public Health, Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Identification, expression, and artificial selection of silkworm epigenetic modification enzymes. BMC Genomics 2020; 21:740. [PMID: 33096977 PMCID: PMC7585183 DOI: 10.1186/s12864-020-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. Results We identified 44 EMEs in the genome of silkworm (Bombyx mori) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori, Drosophila melanogaster, and Mus musculus. These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4–20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. Conclusions The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding. Supplementary information Supplementary information accompanies this paper at 10.1186/s12864-020-07155-z.
Collapse
|
4
|
Humbert J, Salian S, Makrythanasis P, Lemire G, Rousseau J, Ehresmann S, Garcia T, Alasiri R, Bottani A, Hanquinet S, Beaver E, Heeley J, Smith ACM, Berger SI, Antonarakis SE, Yang XJ, Côté J, Campeau PM. De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. Am J Hum Genet 2020; 107:564-574. [PMID: 32822602 PMCID: PMC7477011 DOI: 10.1016/j.ajhg.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.
Collapse
Affiliation(s)
- Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Smrithi Salian
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Periklis Makrythanasis
- Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Gabrielle Lemire
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Justine Rousseau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Sophie Ehresmann
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Thomas Garcia
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Rami Alasiri
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Sylviane Hanquinet
- Unit of Pediatric Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Erin Beaver
- Mercy Kids Genetics, St. Louis, MO 63141, USA
| | | | - Ann C M Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Seth I Berger
- Children's National Health System, Washington, DC 20010, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
5
|
Hu J, Chen L, Yin J, Yin H, Huang Y, Tian J. Hyperactivity, Memory Defects, and Craniofacial Abnormalities in Zebrafish fmr1 Mutant Larvae. Behav Genet 2020; 50:152-160. [PMID: 32048109 DOI: 10.1007/s10519-020-09995-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
Abstract
Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jian Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Huancai Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, People's Republic of China.
| | - Jingjing Tian
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China.
- Academy for Engineering & Technology, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
6
|
Park SY, Seo J, Chun YS. Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster. J Korean Med Sci 2019; 34:e225. [PMID: 31436053 PMCID: PMC6706347 DOI: 10.3346/jkms.2019.34.e225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tauopathies, a class of neurodegenerative diseases that includes Alzheimer's disease (AD), are characterized by the deposition of neurofibrillary tangles composed of hyperphosphorylated tau protein in the human brain. As abnormal alterations in histone acetylation and methylation show a cause and effect relationship with AD, we investigated the role of several Jumonji domain-containing histone demethylase (JHDM) genes, which have yet to be studied in AD pathology. METHODS To examine alterations of several JHDM genes in AD pathology, we performed bioinformatics analyses of JHDM gene expression profiles in brain tissue samples from deceased AD patients. Furthermore, to investigate the possible relationship between alterations in JHDM gene expression profiles and AD pathology in vivo, we examined whether tissue-specific downregulation of JHDM Drosophila homologs (kdm) can affect tauR406W-induced neurotoxicity using transgenic flies containing the UAS-Gal4 binary system. RESULTS The expression levels of JHDM1A, JHDM2A/2B, and JHDM3A/3B were significantly higher in postmortem brain tissue from patients with AD than from non-demented controls, whereas JHDM1B mRNA levels were downregulated in the brains of patients with AD. Using transgenic flies, we revealed that knockdown of kdm2 (homolog to human JHDM1), kdm3 (homolog to human JHDM2), kdm4a (homolog to human JHDM3A), or kdm4b (homolog to human JHDM3B) genes in the eye ameliorated the tauR406W-engendered defects, resulting in less severe phenotypes. However, kdm4a knockdown in the central nervous system uniquely ameliorated tauR406W-induced locomotion defects by restoring heterochromatin. CONCLUSION Our results suggest that downregulation of kdm4a expression may be a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Sung Yeon Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yang Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Tam LM, Jiang J, Wang P, Li L, Miao W, Dong X, Wang Y. Arsenite Binds to the Zinc Finger Motif of TIP60 Histone Acetyltransferase and Induces Its Degradation via the 26S Proteasome. Chem Res Toxicol 2017; 30:1685-1693. [PMID: 28837777 DOI: 10.1021/acs.chemrestox.7b00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic is a ubiquitous environmental contaminant with widespread public health concern. Epidemiological studies have revealed that chronic human exposure to arsenic in drinking water is associated with the prevalence of skin, lung, and bladder cancers. Aberrant histone modifications (e.g., methylation, acetylation, and ubiquitination) were previously found to be accompanied by arsenic exposure; thus, perturbation of epigenetic pathways is thought to contribute to arsenic carcinogenesis. Arsenite is known to interact with zinc finger motifs of proteins, and zinc finger motif is present in and indispensable for the enzymatic activities of crucial histone-modifying enzymes especially the MYST family of histone acetyltransferases (e.g., TIP60). Hence, we reasoned that trivalent arsenic may target the zinc finger motif of these enzymes, disturb their enzymatic activities, and alter histone acetylation. Herein, we found that As3+ could bind directly to the zinc-finger motif of TIP60 in vitro and in cells. In addition, exposure to As3+ could lead to a dose-dependent decrease in TIP60 protein level via the ubiquitin-proteasome pathway. Thus, the results from the present study revealed, for the first time, that arsenite may target cysteine residues in the zinc-finger motif of the TIP60 histone acetyltransferase, thereby altering the H4K16Ac histone epigenetic mark. Our results also shed some new light on the mechanisms underlying the arsenic-induced epigenotoxicity and carcinogenesis in humans.
Collapse
Affiliation(s)
- Lok Ming Tam
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Ji Jiang
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Lin Li
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Weili Miao
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Xuejiao Dong
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, ‡Cell, Molecular, and Developmental Biology Graduate Program, and §Department of Chemistry, University of California at Riverside , Mail Drop 027, Riverside, California 92521-0403, United States
| |
Collapse
|
8
|
Alzheimer's Disease and Histone Code Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:321-336. [PMID: 28523554 DOI: 10.1007/978-3-319-53889-1_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substantial progress has been made in identifying Alzheimer's disease (AD) risk-associated variants using genome-wide association studies (GWAS). The majority of these risk variants reside in noncoding regions of the genome making their functional evaluation difficult; however, they also infer the presence of unconventional regulatory regions that may reside at these locations. We know from these studies that rare familial cases of AD account for less than 5% of all AD cases and autosomal dominant mutations in APP, PSEN1 and PSEN2 account for less than 10% of the genetic basis of these familial cases [1]. The sporadic form of AD, while more complex, still has a substantial genetic component evidenced by observational studies where 30-48% of AD patients have a first degree relative who is also affected [2]. In addition, the strongest risk factor after age is the APOE E4 polymorphism, and more than 20 other risk variants have been identified to date, reviewed in two recent papers [3, 4]. Monozygotic twin studies have revealed a discordance for AD, implicating that a combination of epigenetic and genetic factors are likely involved in the development of AD [5].
Collapse
|
9
|
Xu S, Panikker P, Iqbal S, Elefant F. Tip60 HAT Action Mediates Environmental Enrichment Induced Cognitive Restoration. PLoS One 2016; 11:e0159623. [PMID: 27454757 PMCID: PMC4959735 DOI: 10.1371/journal.pone.0159623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathological disorders like Alzheimer's disease (AD). While EE benefits involve epigenetic gene control mechanisms that comprise histone acetylation, the histone acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for Tip60 HAT action in mediating activity- dependent beneficial neuroadaptations to EE using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that flies raised under EE conditions display enhanced MB axonal outgrowth, synaptic marker protein production, histone acetylation induction and transcriptional activation of cognition linked genes when compared to their genotypically identical siblings raised under isolated conditions. Further, these beneficial changes are impaired in both Tip60 HAT mutant flies and APP neurodegenerative flies. While EE conditions provide some beneficial neuroadaptive changes in the APP neurodegenerative fly MB, such positive changes are significantly enhanced by increasing MB Tip60 HAT levels. Our results implicate Tip60 as a critical mediator of EE-induced benefits, and provide broad insights into synergistic behavioral and epigenetic based therapeutic approaches for treatment of cognitive disorder.
Collapse
Affiliation(s)
- Songjun Xu
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sahira Iqbal
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|