1
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Roles of Potassium and Calcium Currents in the Bistable Firing Transition. Brain Sci 2023; 13:1347. [PMID: 37759949 PMCID: PMC10527161 DOI: 10.3390/brainsci13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (I). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and I) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil
| | | | - Diogo L. M. Souza
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Conrado F. Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Enrique C. Gabrick
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Lucas E. Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - José D. Szezech
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Antonio M. Batista
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Iberê L. Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Role of Potassium and Calcium Currents in the Bistable Firing Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553625. [PMID: 37645875 PMCID: PMC10462112 DOI: 10.1101/2023.08.16.553625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slowwave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking cells (RS) with frequency adaptation and do not exhibit bursts in current-clamp experiments ( in vitro ). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings ( g syn ) and external current inputs ( I ). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold ( I L ) and low-threshold ( I T ) ion channels play a role in increasing and decreasing the parameter conditions ( g syn and I ) in which bistable dynamics occur, respectively. For high values of I L conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance I T increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, 09606-045 São Bernardo do Campo, SP, Brazil
| | | | - Diogo L M Souza
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Conrado F Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Enrique C Gabrick
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Lucas E Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - José D Szezech
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Antonio M Batista
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Rodrigo F O Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
3
|
Hong H, Sanchez JT. Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System. J Exp Neurosci 2018; 12:1179069518815628. [PMID: 30559595 PMCID: PMC6291874 DOI: 10.1177/1179069518815628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Birds such as the barn owl and zebra finch are known for their remarkable hearing abilities that are critical for survival, communication, and vocal learning functions. A key to achieving these hearing abilities is the speed and precision required for the temporal coding of sound-a process heavily dependent on the structural, synaptic, and intrinsic specializations in the avian auditory brainstem. Here, we review recent work from us and others focusing on the specialization of neurons in the chicken cochlear nucleus magnocellularis (NM)-a first-order auditory brainstem structure analogous to bushy cells in the mammalian anteroventral cochlear nucleus. Similar to their mammalian counterpart, NM neurons are mostly adendritic and receive auditory nerve input through large axosomatic endbulb of Held synapses. Axonal projections from NM neurons to their downstream auditory targets are sophisticatedly programmed regarding their length, caliber, myelination, and conduction velocity. Specialized voltage-dependent potassium and sodium channel properties also play important and unique roles in shaping the functional phenotype of NM neurons. Working synergistically with potassium channels, an atypical current known as resurgent sodium current promotes rapid and precise action potential firing for NM neurons. Interestingly, these structural and functional specializations vary dramatically along the tonotopic axis and suggest a plethora of encoding strategies for sounds of different acoustic frequencies, mechanisms likely shared across species.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, USA.,The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Hong H, Wang X, Lu T, Zorio DAR, Wang Y, Sanchez JT. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem. Front Cell Neurosci 2018; 12:175. [PMID: 29997479 PMCID: PMC6028565 DOI: 10.3389/fncel.2018.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM), an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons) have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV) conductances, unique combination of KV subunits and specialized sodium (NaV) channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT) with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR) was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Hong H, Lu T, Wang X, Wang Y, Sanchez JT. Resurgent sodium current promotes action potential firing in the avian auditory brainstem. J Physiol 2018; 596:423-443. [PMID: 29193076 PMCID: PMC5792585 DOI: 10.1113/jp275083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022] Open
Abstract
Key points Auditory brainstem neurons of all vertebrates fire phase‐locked action potentials (APs) at high rates with remarkable fidelity, a process controlled by specialized anatomical and biophysical properties. This is especially true in the avian nucleus magnocellularis (NM) – the analogue of the mammalian anteroventral cochlear nucleus. In addition to high voltage‐activated potassium (KHVA) channels, we report, using whole cell physiology and modelling, that resurgent sodium current (INaR) of sodium channels (NaV) is equally important and operates synergistically with KHVA channels to enable rapid AP firing in NM. Anatomically, we detected strong NaV1.6 expression near hearing maturation, which was less distinct during hearing development despite functional evidence of INaR, suggesting that multiple NaV channel subtypes may contribute to INaR. We conclude that INaR plays an important role in regulating rapid AP firing for NM neurons, a property that may be evolutionarily conserved for functions related to similar avian and mammalian hearing.
Abstract Auditory brainstem neurons are functionally primed to fire action potentials (APs) at markedly high rates in order to rapidly encode the acoustic information of sound. This specialization is critical for survival and the comprehension of behaviourally relevant communication functions, including sound localization and distinguishing speech from noise. Here, we investigated underlying ion channel mechanisms essential for high‐rate AP firing in neurons of the chicken nucleus magnocellularis (NM) – the avian analogue of bushy cells of the mammalian anteroventral cochlear nucleus. In addition to the established function of high voltage‐activated potassium channels, we found that resurgent sodium current (INaR) plays a role in regulating rapid firing activity of late‐developing (embryonic (E) days 19–21) NM neurons. INaR of late‐developing NM neurons showed similar properties to mammalian neurons in that its unique mechanism of an ‘open channel block state’ facilitated the recovery and increased the availability of sodium (NaV) channels after depolarization. Using a computational model of NM neurons, we demonstrated that removal of INaR reduced high‐rate AP firing. We found weak INaR during a prehearing period (E11–12), which transformed to resemble late‐developing INaR properties around hearing onset (E14–16). Anatomically, we detected strong NaV1.6 expression near maturation, which became increasingly less distinct at hearing onset and prehearing periods, suggesting that multiple NaV channel subtypes may contribute to INaR during development. We conclude that INaR plays an important role in regulating rapid AP firing for NM neurons, a property that may be evolutionarily conserved for functions related to similar avian and mammalian hearing. Auditory brainstem neurons of all vertebrates fire phase‐locked action potentials (APs) at high rates with remarkable fidelity, a process controlled by specialized anatomical and biophysical properties. This is especially true in the avian nucleus magnocellularis (NM) – the analogue of the mammalian anteroventral cochlear nucleus. In addition to high voltage‐activated potassium (KHVA) channels, we report, using whole cell physiology and modelling, that resurgent sodium current (INaR) of sodium channels (NaV) is equally important and operates synergistically with KHVA channels to enable rapid AP firing in NM. Anatomically, we detected strong NaV1.6 expression near hearing maturation, which was less distinct during hearing development despite functional evidence of INaR, suggesting that multiple NaV channel subtypes may contribute to INaR. We conclude that INaR plays an important role in regulating rapid AP firing for NM neurons, a property that may be evolutionarily conserved for functions related to similar avian and mammalian hearing.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, 32306, USA.,Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, 32306, USA.,Program in Neuroscience Florida State University College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA.,The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Kopp-Scheinpflug C. Your genes decide what you are listening to. Channels (Austin) 2017; 11:355-356. [PMID: 28662361 PMCID: PMC5626367 DOI: 10.1080/19336950.2017.1348870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Conny Kopp-Scheinpflug
- a Division of Neurobiology, Department Biology II , Ludwig-Maximilians-University Munich , Planegg-Martinsried , Germany
| |
Collapse
|