1
|
Xu R, Zhang Y, Gao Y, Jia S, Choi S, Xu Y, Gong J. Development of a targeted method for DNA adductome and its application as sensitive biomarkers of ambient air pollution exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135018. [PMID: 38959829 DOI: 10.1016/j.jhazmat.2024.135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
DNA adducts are widely recognized as biomarkers of exposure to environmental carcinogens and associated health effects in toxicological and epidemiological studies. This study presents a targeted and sensitive method for comprehensive DNA adductome analysis using ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). The method was developed using calf thymus DNA, with careful optimization of mass spectrometric parameters, chromatographic separation conditions, and pretreatment methods. Ultimately, a targeted method was established for 41 DNA adducts, which showed good linearity (R2 ≥0.992), recovery (80.1-119.4 %), accuracy (81.3-117.8 %), and precision (relative standard deviation <14.2 %). The established method was employed to analyze DNA adducts in peripheral blood cells from pregnant women in Shanxi and Beijing. Up to 23 DNA adducts were successfully detected in samples of varying sizes. From 2 μg of maternal DNA samples, seven specific adducts were identified: 5-methyl-2'-deoxycytidine (5-MedC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), N6-methyl-2'-deoxyadenosine (N6-MedA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 5-hydroxy-2'-deoxycytidine (5-OHdC), 1,N6-etheno-2'-deoxyadenosine (1,N6-εdA), and N2-methyl-2'-deoxyguanosine (N2-MedG). This study reveals that exposure to higher concentrations of ambient air pollutants may elevate the levels of DNA methylation and oxidative damage at different base sites, highlighting the application potential of DNA adducts as sensitive biomarkers of air pollution exposure.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingfeng Gao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Shuyu Jia
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Seokho Choi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Mondal T, Nautiyal A, Ghosh S, Loffredo CA, Mitra D, Saha C, Dey SK. An evaluation of DNA double strand break formation and excreted guanine species post whole body PET/CT procedure. JOURNAL OF RADIATION RESEARCH 2021; 62:590-599. [PMID: 34037214 PMCID: PMC8273794 DOI: 10.1093/jrr/rrab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ionizing radiation-induced oxidation and formation of deoxyribonucleic acid (DNA) double strand breaks (DSBs) are considered the exemplar of genetic lesions. Guanine bases are most prone to be oxidized when DNA and Ribonucleic acid (RNA) are damaged. The repair processes that are initiated to correct this damage release multiple oxidized guanine species into the urine. Hence, the excretion of guanine species can be related with the total repair process. Our study quantified the total DSBs formation and the amount of guanine species in urine to understand the DNA break and repair process after whole body (WB) exposure to 18F-FDG positron emission tomography/computed tomography (PET/CT). A total of 37 human participants were included with control and test groups and the average radiation dose was 27.50 ± 2.91 mSv. γ-H2AX foci assay in the collected blood samples was performed to assess the DSBs, and excreted guanine species in urine were analyzed by a competitive ELISA method. We observed a significant increase of DNA damage that correlated well with the increasing dose (p-value 0.009) and body weight (p-value 0.05). In the test group, excreted guanine species in urine sample significantly increased (from 24.29 ± 5.82 to 33.66 ± 7.20 mg/mmol creatinine). A minimum (r2 = 0.0488) correlation was observed between DSBs formation and excreted guanine species. A significant difference of DNA damage and 8-OHdG formation was seen in the test group compared to controls. Larger population studies are needed to confirm these observations, describe the fine-scale timing of changes in the biomarker levels after exposure, and further clarify any potential risks to patients from PET/CT procedures.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| | - Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, AMRI Hospitals, Dhakuria, Kolkata 700029, India
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, AMRI Hospitals, Dhakuria, Kolkata 700029, India
| | - Chabita Saha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700064, India
| |
Collapse
|
3
|
Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21113743. [PMID: 32466448 PMCID: PMC7313038 DOI: 10.3390/ijms21113743] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine. 8-hydroxy-2-deoxyguanosine is considered a biomarker for oxidative damage of DNA. It is needed to define background ranges for 8-OHdG, to use it as a measure of oxidative stress overproduction. We established a standardized protocol for a systematic review and meta-analysis to assess background ranges for urinary 8-OHdG concentrations in healthy populations. We computed geometric mean (GM) and geometric standard deviations (GSD) as the basis for the meta-analysis. We retrieved an initial 1246 articles, included 84 articles, and identified 128 study subgroups. We stratified the subgroups by body mass index, gender, and smoking status reported. The pooled GM value for urinary 8-OHdG concentrations in healthy adults with a mean body mass index (BMI) ≤ 25 measured using chemical methods was 3.9 ng/mg creatinine (interquartile range (IQR): 3 to 5.5 ng/mg creatinine). A significant positive association was observed between smoking and urinary 8-OHdG concentrations when measured by chemical analysis. No gender effect was observed.
Collapse
|
4
|
Loch-Caruso R, Hassan I, Harris SM, Kumar A, Bjork F, Lash LH. Trichloroethylene exposure in mid-pregnancy decreased fetal weight and increased placental markers of oxidative stress in rats. Reprod Toxicol 2018; 83:38-45. [PMID: 30468822 DOI: 10.1016/j.reprotox.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Although epidemiology studies have associated maternal trichloroethylene (TCE) exposure with decreased birth weight and preterm birth, mechanistic explanations for these associations are currently lacking. We hypothesized that TCE targets the placenta with adverse consequences for pregnancy outcomes. Pregnant Wistar rats were exposed orally to vehicle or 480 mg TCE/kg body weight from gestational days (gd) 6-16, and tissues were collected on gd 16. Exposure to TCE significantly decreased average fetal weight without reducing maternal weight. In placenta, TCE significantly increased 8-hydroxy-deoxyguanosine, global 5-hydroxymethylcytosine, and mRNA expression of Tet3, which codes for an enzyme involved in 5-hydroxymethylcytosine formation. Furthermore, glutathione S-transferase activity and immunohistochemical staining were increased in placentas of TCE-exposed rats. The present study provides the first evidence that TCE increases markers of oxidative stress in placenta in a fetal growth restriction rat model, providing new insight into the placenta as a potentially relevant target for TCE-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Iman Hassan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Anjana Kumar
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Faith Bjork
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Bal C, Büyükşekerci M, Koca C, Ağış ER, Erdoğan S, Baran P, Gündüzöz M, Yilmaz ÖH. The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure. Hum Exp Toxicol 2016; 35:915-20. [DOI: 10.1177/0960327115608928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group ( p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used.
Collapse
Affiliation(s)
- C Bal
- Department of Biochemistry, Occupational Diseases Hospital, Ankara, Turkey
| | - M Büyükşekerci
- Department of Pharmacology, Occupational Diseases Hospital, Ankara, Turkey
| | - C Koca
- Department of Biochemistry, Atatürk Educational and Research Hospital, Ankara, Turkey
| | - ER Ağış
- Department of Pharmacology, Occupational Diseases Hospital, Ankara, Turkey
| | - S Erdoğan
- Department of Biochemistry, Atatürk Educational and Research Hospital, Ankara, Turkey
| | - P Baran
- Department of Biochemistry, Atatürk Educational and Research Hospital, Ankara, Turkey
| | - M Gündüzöz
- Department of Family Medicine, Occupational Diseases Hospital, Ankara, Turkey
| | - ÖH Yilmaz
- Department of Public Health, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
6
|
Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans. PATHOLOGY RESEARCH INTERNATIONAL 2016; 2016:5480267. [PMID: 26966611 PMCID: PMC4761395 DOI: 10.1155/2016/5480267] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
Total Antioxidant Capacity (TAC) is a biomarker often used in order to investigate oxidative stress in many pathological conditions. Saliva and urine can be collected noninvasively and represent attractive diagnostic fluids for detecting biomarkers of various pathological conditions. The reviewed case-control and intervention studies that measured salivary or urinary TAC revealed that diseases, antioxidant foods, or supplements and age, gender, and lifestyle factors influenced salivary or urinary TAC. Salivary and urinary TAC were particularly affected by oral or renal status, respectively, as well as by infection; therefore these factors must be taken into account in both case-control and intervention studies. Furthermore, some considerations on sample collection and normalization strategies could be made. In particular, unstimulated saliva could be the better approach to measure salivary TAC, whereas 24 h or spontaneous urine collection should be chosen on the basis of the study outcome and of the creatinine clearance. Finally, the uric acid-independent TAC could be the better approach to evaluate red-ox status of body, in particular after nutritional interventions and in diseases associated with hyperuricaemia.
Collapse
|
7
|
Measurement of a Urinary Marker (8-hydroxydeoxyGuanosine, 8-OHdG) of DNA Oxidative Stress in Epidemiological Surveys: A Pilot Study. Int J Biol Markers 2015; 30:e341-5. [DOI: 10.5301/jbm.5000129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 11/20/2022]
Abstract
Background 8-Hydroxydeoxyguanosine (8-OHdG) is a commonly used marker of DNA oxidative stress in epidemiological studies. The aim of this study was to establish whether the urinary concentration of 8-OHdG varies during the first part of the day, when clinical tests are usually performed, and whether it can therefore be measured without bias in spot urine samples. Material and methods Spot urine samples were collected using a convenience sample. A linear mixed-effects model for repeated measurements was used to analyze 8-OHdG levels. Results A significant increasing trend in time in the 8-OHdG concentration was found among smokers, but not in the case of nonsmokers. Conclusions In epidemiological studies on oxidative stress, all participants should collect their early morning urine specimens – before their first cigarette if they are smokers – to gather information on individual background oxidation levels.
Collapse
|