1
|
Aydin Ö, Meijnikman AS, de Jonge PA, van Stralen K, Börger H, Okur K, Iqbal Z, Warmbrunn MV, Acherman YIZ, Bruin S, Winkelmeijer M, Schimmel AWM, Holst JJ, Poulsen SS, Bäckhed F, Nieuwdorp M, Groen AK, Gerdes VEA. Post-Bariatric Hypoglycemia: an Impaired Metabolic Response to a Meal. Obes Surg 2024; 34:3796-3806. [PMID: 39153140 PMCID: PMC11481667 DOI: 10.1007/s11695-024-07309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycemia (PBH) is caused by postprandial hyperinsulinemia, due to anatomical alterations and changes in post-prandial metabolism after bariatric surgery. The mechanisms underlying the failing regulatory and compensatory systems are unclear. In this study, we investigated the differences in post-prandial hormones and metabolic profiles between patients with and without PBH. METHODS We performed a mixed meal test (MMT) in 63 subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery. Blood was withdrawn at 0, 10, 20, 30, 60, and 120 min after ingestion of a standardized meal. Glucose, insulin, GLP-1, FGF-19, and FGF-21 were measured and untargeted metabolomics analysis was performed on blood plasma to analyze which hormonal and metabolic systems were altered between patients with and without PBH. RESULTS Out of 63, a total of 21 subjects (33%) subjects developed PBH (glucose < 3.1 mmol/L) after surgery. Decreased glucose and increased insulin excursions during MMT were seen in PBH (p < 0.05). GLP-1, FGF-19, and FGF-21 were elevated after surgery (p < 0.001), but did not differ between PBH and non-PBH groups. We identified 20 metabolites possibly involved in carbohydrate metabolism which differed between the two groups, including increased carnitine and acylcholines in PBH. CONCLUSION Overall, 33% of the subjects developed PBH 1 year after RYGB surgery. While GLP-1, FGF-19, and FGF-21 were similar in PBH and non-PBH patients, metabolomics analysis revealed changes in carnitine and acyclcholines that are possibly involved in energy metabolism, which may play a role in the occurrence of PBH.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Karlijn van Stralen
- Department of Scientific Research, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Hanneke Börger
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Kadriye Okur
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Zainab Iqbal
- Cardiometabolic Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Sjoerd Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Alinda W M Schimmel
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Department of Cardiovascular and Metabolic Research, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands.
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| |
Collapse
|
2
|
Kong X, Yang C, Li B, Yan D, Yang Y, Cao C, Xing B, Ma X. FXR/Menin-mediated epigenetic regulation of E2F3 expression controls β-cell proliferation and is increased in islets from diabetic GK rats after RYGB. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167136. [PMID: 38531483 DOI: 10.1016/j.bbadis.2024.167136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates β-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult β-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and β-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in β-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and β-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and β-cell proliferation, a mechanism possibly underlying RYGB-induced β-cell proliferation.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Chenxi Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bingfeng Li
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Dan Yan
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Yanhui Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Cuihua Cao
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bowen Xing
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Dieterle MP, Husari A, Prozmann SN, Wiethoff H, Stenzinger A, Röhrich M, Pfeiffer U, Kießling WR, Engel H, Sourij H, Steinberg T, Tomakidi P, Kopf S, Szendroedi J. Diffuse, Adult-Onset Nesidioblastosis/Non-Insulinoma Pancreatogenous Hypoglycemia Syndrome (NIPHS): Review of the Literature of a Rare Cause of Hyperinsulinemic Hypoglycemia. Biomedicines 2023; 11:1732. [PMID: 37371827 PMCID: PMC10296556 DOI: 10.3390/biomedicines11061732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Differential diagnosis of hypoglycemia in the non-diabetic adult patient is complex and comprises various diseases, including endogenous hyperinsulinism caused by functional β-cell disorders. The latter is also designated as nesidioblastosis or non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). Clinically, this rare disease presents with unspecific adrenergic and neuroglycopenic symptoms and is, therefore, often overlooked. A combination of careful clinical assessment, oral glucose tolerance testing, 72 h fasting, sectional and functional imaging, and invasive insulin measurements can lead to the correct diagnosis. Due to a lack of a pathophysiological understanding of the condition, conservative treatment options are limited and mostly ineffective. Therefore, nearly all patients currently undergo surgical resection of parts or the entire pancreas. Consequently, apart from faster diagnosis, more elaborate and less invasive treatment options are needed to relieve the patients from the dangerous and devastating symptoms. Based on a case of a 23-year-old man presenting with this disease in our department, we performed an extensive review of the medical literature dealing with this condition and herein presented a comprehensive discussion of this interesting disease, including all aspects from epidemiology to therapy.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ayman Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Sophie Nicole Prozmann
- Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Hendrik Wiethoff
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uwe Pfeiffer
- Pfalzklinikum for Psychiatry and Neurology AdÖR, Weinstr. 100, 76889 Klingenmünster, Germany
| | | | - Helena Engel
- Cancer Immune Regulation Group, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8010 Graz, Austria
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
5
|
Brunner's Gland Hyperplasia in a Patient after Roux-Y Gastric Bypass: An Important Pitfall in GLP-1 Receptor Imaging. Case Rep Endocrinol 2020; 2020:4510910. [PMID: 32313706 PMCID: PMC7160728 DOI: 10.1155/2020/4510910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
Severe cases of postprandial hypoglycaemia after bariatric surgery can be a diagnostic and therapeutic challenge. The diagnostic role of 68Ga-DOTA-Exendin-4 PET/CT in postbariatric hypoglycaemia for further treatment decisions is unclear. We present a case of a 50-year-old woman with frequent and severe postprandial hypoglycaemic (≤2.5 mmol/L) episodes starting three years after Roux-Y gastric bypass. Despite strict dietary adherence and several medical therapies, the patient remained severely affected, and 68Ga-DOTA-Exendin-4 PET/CT was performed to exclude atypical presentation of an insulinoma or nesidioblastosis. No pancreatic abnormalities were found, but intensive tracer accumulation in the first and second part of the duodenum was detected, which proved to be hyperplastic Brunner's glands on histology and were strongly positive for the glucagon-like peptide-1 receptor. This case provides histopathological verification that duodenal 68Ga-DOTA-Exendin-4 uptake is caused by uptake in Brunner's glands and points to a potential relationship between bariatric surgery and Brunner's glands.
Collapse
|
6
|
Villalba A, Rodriguez-Fernandez S, Perna-Barrull D, Ampudia RM, Gomez-Muñoz L, Pujol-Autonell I, Aguilera E, Coma M, Cano-Sarabia M, Vázquez F, Verdaguer J, Vives-Pi M. Repurposed Analog of GLP-1 Ameliorates Hyperglycemia in Type 1 Diabetic Mice Through Pancreatic Cell Reprogramming. Front Endocrinol (Lausanne) 2020; 11:258. [PMID: 32477262 PMCID: PMC7237704 DOI: 10.3389/fendo.2020.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. An ideal immunotherapy should combine the blockade of the autoimmune response with the recovery of functional target cell mass. With the aim to develop new therapies for type 1 diabetes that could contribute to β-cell mass restoration, a drug repositioning analysis based on systems biology was performed to identify the β-cell regenerative potential of commercially available compounds. Drug repositioning is a strategy used for identifying new uses for approved drugs that are outside the scope of the medical indication. A list of 28 non-synonymous repurposed drug candidates was obtained, and 16 were selected as diabetes mellitus type 1 treatment candidates regarding pancreatic β-cell regeneration. Drugs with poor safety profile were further filtered out. Lastly, we selected liraglutide for its predictive efficacy values for neogenesis, transdifferentiation of α-cells, and/or replication of pre-existing β-cells. Liraglutide is an analog of glucagon-like peptide-1, a drug used in patients with type 2 diabetes. Liraglutide was tested in immunodeficient NOD-Scid IL2rg-/- (NSG) mice with type 1 diabetes. Liraglutide significantly improved the blood glucose levels in diabetic NSG mice. During the treatment, a significant increase in β-cell mass was observed due to a boost in β-cell number. Both parameters were reduced after withdrawal. Interestingly, islet bihormonal glucagon+insulin+ cells and insulin+ ductal cells arose during treatment. In vitro experiments showed an increase of insulin and glucagon gene expression in islets cultured with liraglutide in normoglycemia conditions. These results point to β-cell replacement, including transdifferentiation and neogenesis, as aiding factors and support the role of liraglutide in β-cell mass restoration in type 1 diabetes. Understanding the mechanism of action of this drug could have potential clinical relevance in this autoimmune disease.
Collapse
Affiliation(s)
- Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Rosa-Maria Ampudia
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Federico Vázquez
- Endocrinology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, IRBLleida, University of Lleida, Lleida, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|
7
|
Debédat J, Amouyal C, Aron-Wisnewsky J, Clément K. Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome? Semin Immunopathol 2019; 41:461-475. [DOI: 10.1007/s00281-019-00738-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
|