1
|
Jin Z, Xiao X, Gui L, Lu Q, Zhang J. Determination of doxorubicin in plasma and tissues of mice by UPLC-MS/MS and its application to pharmacokinetic study. Heliyon 2024; 10:e35123. [PMID: 39157405 PMCID: PMC11328074 DOI: 10.1016/j.heliyon.2024.e35123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
A rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of doxorubicin (DOX) in mouse plasma and tissues, including the heart, liver, spleen, lung, kidney and tumor, and to investigate the pharmacokinetics and distribution in mice. In this study, daunorubicin (DNR) was used as an internal standard, and the mobile phase consisted of ammonium formate 2 mM containing 0.1 % formic acid (A) and acetonitrile (B), the chromatographic column was ACQUITY UPLC BEHTM C18 with a gradient elution at a flow rate of 0.2 mL/min. Electrospray ionization (ESI) in positive ion pattern was utilized for the ion separation of DOX, with the ions used for quantitative analysis being DOX m/z 544.28 → 397.10 and DNR m/z 528.35 → 321.08, respectively. The results showed that a good linear relationship in the calibration curve range of 1-800 ng/mL in mouse plasma and 1-2500 ng/g in tissues (R2 > 0.99) with the limits of quantification of 1 ng/mL in plasma and tissues. The method exhibited good matrix effect and extraction recovery, with the intra-day and inter-day precision of plasma and tissue were less than 10.3 % and 15.4 %, and the relative error (RE) were both less than ±14.8 % and ±18.9 %, respectively. The stability results under different conditions were found to be accurate. It also revealed the distribution of DOX in various tissues of mice, with the concentration ranking as liver > heart > kidney > spleen > lung > tumor. This method was successfully used to the study for the pharmacokinetics in plasma and drug distribution in tissues of BALB/c mice.
Collapse
Affiliation(s)
- Zhilin Jin
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xue Xiao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| |
Collapse
|
2
|
Elmileegy IMH, Waly HSA, Alghriany AAI, Abou Khalil NS, Mahmoud SMM, Negm EA. Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials. BMC Complement Med Ther 2023; 23:423. [PMID: 37993853 PMCID: PMC10664358 DOI: 10.1186/s12906-023-04250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The liver was identified as a primary target organ for the chemo-radiological effects of uranyl acetate (UA). Although the anti-oxidant and anti-apoptotic properties of gallic acid (GA) make it a promising phytochemical to resist its hazards, there is no available data in this area of research. METHODS To address this issue, eighteen rats were randomly and equally divided into three groups. One group was received carboxymethyl cellulose (vehicle of GA) and kept as a control. The UA group was injected intraperitoneally with UA at a single dose of 5 mg/kg body weight. The third group (GA + UA group) was treated with GA orally at a dose of 100 mg/kg body weight for 14 days before UA exposure. UA was injected on the 15th day of the experiment in either the UA group or the GA + UA group. The biochemical, histological, and immunohistochemical findings in the GA + UA group were compared to both control and UA groups. RESULTS The results showed that UA exposure led to a range of adverse effects. These included elevated plasma levels of aspartate aminotransferase, lactate dehydrogenase, total protein, globulin, glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein and decreased plasma levels of high-density lipoprotein cholesterol. The exposure also disrupted the redox balance, evident through decreased plasma total antioxidant capacity and hepatic nitric oxide, superoxide dismutase, reduced glutathione, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase and increased hepatic oxidized glutathione and malondialdehyde. Plasma levels of albumin and alanine aminotransferase did not significantly change in all groups. Histopathological analysis revealed damage to liver tissue, characterized by deteriorations in tissue structure, excessive collagen accumulation, and depletion of glycogen. Furthermore, UA exposure up-regulated the immuno-expression of cleaved caspase-3 and down-regulated the immuno-expression of nuclear factor-erythroid-2-related factor 2 in hepatic tissues, indicating an induction of apoptosis and oxidative stress response. However, the pre-treatment with GA proved to be effective in mitigating these negative effects induced by UA exposure, except for the disturbances in the lipid profile. CONCLUSIONS The study suggests that GA has the potential to act as a protective agent against the adverse effects of UA exposure on the liver. Its ability to restore redox balance and inhibit apoptosis makes it a promising candidate for countering the harmful effects of chemo-radiological agents such as UA.
Collapse
Affiliation(s)
- Ibtisam M H Elmileegy
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan S A Waly
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
| | - Sara M M Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
3
|
Kaya S, Yalcın T, Tektemur A, Kuloğlu T. N-Acetylcysteine may exert hepatoprotective effect by regulating Meteorin-Like levels in Adriamycin-induced liver injury. Cell Stress Chaperones 2023; 28:849-859. [PMID: 37670199 PMCID: PMC10746670 DOI: 10.1007/s12192-023-01376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Adriamycin (ADR) is an important chemotherapeutic drug, but it has serious side effects such as hepatotoxicity. This study aimed to evaluate whether N-acetylcysteine (NAC) has hepatoprotective effects against ADR-induced hepatotoxicity in rats. In addition, it was aimed to determine how Meteorin-Like (MtrnL), which has pleiotropic effects on immunology, inflammation, and metabolism, is affected by ADR and/or NAC applications in liver tissue. 28 rats were randomly assigned to one of four equal groups in the study: control (no treatment), NAC (150 mg/kg/day of NAC intraperitoneally (i.p), ADR (15 mg/kg only on the first day of the experiment), and ADR + NAC (ADR 15 mg/kg on the first day of the experiment + 150 mg/kg/day NAC i.p). After 15 days, liver enzyme levels in serum, oxidant/antioxidant parameters in liver tissue, histopathological changes, caspase 3 (Casp3) and heat shock protein 70 (HSP-70) immunoreactivities, and MtrnL levels were examined. Histopathological changes, liver enzyme levels, as well as HSP-70, and Casp3 immunoreactivities increased due to ADR application. Additionally, MtrnL levels in liver tissue were significantly increased as a result of ADR application. However, it was detected that the NAC application significantly regulated the ADR-induced changes. Furthermore, it was determined that NAC administration regulated the changes in ADR-induced oxidative stress parameters. We propose that NAC may exert a hepatoprotective effect by regulating ADR-induced altered oxidative stress parameters, MtrnL levels, Casp3, and HSP-70 immunoreactivities in the liver.
Collapse
Affiliation(s)
- Sercan Kaya
- Health Services Vocational School, Batman University, Batman, Turkey.
| | - Tuba Yalcın
- Health Services Vocational School, Batman University, Batman, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Belhadjali F, Ghrir S, Ksia F, Limam F, Aouani E, Mokni M. Protective effect of grape seed extract and exercise training on tissues toxicities in doxorubicin-treated healthy rat. Biomarkers 2023; 28:544-554. [PMID: 37555371 DOI: 10.1080/1354750x.2023.2246698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of Grape seed extract (GSE) and exercise training on Doxorubicin (Doxo)-induced cardio, hepato and myo toxicities in healthy rats. METHODS Thirty male Wistar rats were randomly divided into five groups and daily treated by intraperitoneal route during two months either with ethanol 10% (Control); Doxo (1.5 mg/kg); Doxo + exercise (1.5 mg/kg + swimming exercise for 30 min twice a week); Doxo + GSE (1.5 mg/kg + GSE 2.5 g/kg); Doxo + GSE + exercise (1.5 mg/kg + GSE 2.5 g/kg + swimming exercise for 30 min twice a week). At the end of the treatment, tissues were collected and processed for the determination of oxidative stress (OS), intracellular mediators, energy fuelling biomarkers, carbohydrate metabolism parameters and muscle histopathology. RESULTS Doxo provoked OS characterised by an increased lipoperoxidation (LPO) and protein carbonylation and decreased antioxidant enzyme activities. Doxo also affected intracellular mediators, disturbed carbohydrate metabolism and energy fuelling in skeletal muscle as assessed by down-regulated Electron Transport Chain (ETC) complex activities leading in fine to altered skeletal muscle structure and function. CONCLUSION Almost all Doxo-induced disturbances were partially corrected with GSE and exercise on their own and more efficiently with the combined treatment (GSE + exercise).
Collapse
Affiliation(s)
- Feiza Belhadjali
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Sidi Bou Saïd, Carthage, Tunisie
| | - Slim Ghrir
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Féryel Ksia
- Laboratoire Environnement, Inflammation, Signalisation et Pathologies (LR 18ES40), Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisie
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Ezzedine Aouani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Meherzia Mokni
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| |
Collapse
|
5
|
Tektemur NK, Tektemur A, Güzel EE. King Oyster Mushroom, Pleurotus eryngii (Agaricomycetes), Extract Can Attenuate Doxorubicin-Induced Lung Damage by Inhibiting Oxidative Stress in Rats. Int J Med Mushrooms 2023; 25:1-12. [PMID: 36734915 DOI: 10.1615/intjmedmushrooms.2022046311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX), a broad spectrum chemotherapeutic, has toxic effects on healthy tissues. Mitochondrial processes and oxidative stress act in the DOX-induced toxicity, therefore antioxidant therapies are widely used. The study was aimed to evaluate the therapeutic potential of Pleurotus eryngii extract (PEE), an extract of a fungus with antioxidant properties, against DOX-induced lung damage. Rats were divided into Control, DOX, DOX + PEE, and PEE groups (n = 6). DOX was administered intraperitoneally in a single dose (10 mg/kg BW) and PE (200 mg/kg BW) was administered by oral gavage every other day for 21 days. Histopathological evaluations, immunohistochemical analyses, total oxidant status (TOS)/total antioxidant status (TAS) method, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed. DOX led to severe histopathological disruptions in rat lungs. Also, DOX remarkably increased the expression of dynamin 1 like (DRP1) and decreased the expression of mitofusin 1 (MFN1) and mitofusin 2 (MFN2) genes, which are related to mitochondrial dynamics. Moreover, DOX caused an increase in TOS/ TAS and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. On the other hand, PEE treatment remarkably normalized the histopathological findings, mitochondrial dynamics-related gene expressions, markers of oxidative stress, and DNA damage. The present study signs out that PEE can ameliorate the DOX-mediated lung toxicity and the antioxidant mechanism associated with mitochondrial dynamics can have a role in this potent therapeutic effect.
Collapse
Affiliation(s)
- Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Elif Erdem Güzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
6
|
Silva RLDS, Lins TLBG, Monte APOD, de Andrade KO, de Sousa Barberino R, da Silva GAL, Campinho DDSP, Junior RCP, Matos MHTD. Protective effect of gallic acid on doxorubicin-induced ovarian toxicity in mouse. Reprod Toxicol 2023; 115:147-156. [PMID: 36572231 DOI: 10.1016/j.reprotox.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The aims of the present study were to evaluate the protective effects of gallic acid against doxorubicin-induced ovarian toxicity in mice, and to verify the possible involvement of PI3K and mTOR signaling pathway members (PTEN, Akt, FOXO3a and rpS6) in the gallic acid protective actions. Mice were pretreated with NaCl (0.15 M, p.o.) (control and doxorubicin groups) or gallic acid (50, 100 or 200 mg/kg body weight, p.o.) once daily, for 5 days, and on the third day of treatment, after 1 h of treatment administration, the mice received saline solution (i.p.) (control group) or doxorubicin (10 mg/kg of body weight, i.p.). Next, the ovaries were harvested for histological (follicular morphology and activation), fluorescence (GSH and mitochondrial activity), and immunohistochemical (PCNA, cleaved caspase-3, TNF-α, p-PTEN, Akt, p-Akt, p-rpS6 and p-FOXO3a) analyses. The results showed that cotreatment with 50 mg/kg gallic acid plus doxorubicin preserved the percentage of normal follicles and cell proliferation, reduced the percentage of cleaved caspase-3 follicles, prevented inflammation, and increased GSH concentrations and mitochondrial activity compared to doxorubicin treatment alone. Furthermore, cotreatment 50 mg/kg gallic acid plus doxorrubicin increased expression of Akt, p-Akt, p-rpS6 and p-FOXO3a compared to the doxorubicin alone. In conclusion, 50 mg/kg gallic acid protects the mouse ovary against doxorubicin-induced damage by improving GSH concentrations and mitochondrial activity and cellular proliferation, inhibiting inflammation and apoptosis, and regulating PI3K and mTOR signaling pathway.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Thae Lanne Barbosa Gama Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Alane Pains Oliveira do Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Kíscyla Oliveira de Andrade
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Gizele Augusta Lemos da Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Daniela da Silva Pereira Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Raimundo Campos Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, Petrolina 56300-900, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil.
| |
Collapse
|
7
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
|
8
|
Yildirim N, Lale A, Yazıcı GN, Sunar M, Aktas M, Ozcicek A, Suleyman B, Ozcicek F, Suleyman H. Ameliorative effects of Liv-52 on doxorubicin-induced oxidative damage in rat liver. Biotech Histochem 2022; 97:616-621. [PMID: 35527648 DOI: 10.1080/10520295.2022.2065533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hepatotoxicity is a common side effect of doxorubicin (Dox) treatment of cancer. Liv-52 is an ayurvedic medicine that is reported to ameliorate liver injury due to oxidative stress. We investigated the effects of Liv-52 on Dox induced oxidative damage to liver tissues of rats using biochemical and histopathological techniques. Thirty male rats were assigned randomly into three equal groups: control (CG), Dox group (DG) Liv-52 + Dox group (LD). Rats in the LD group received 50 mg/kg Liv-52 in distilled water via gastric gavage. Distilled water was given via the same route to the rats in the DG and CG groups. Rats in the LD and DG groups were injected intraperitoneally with 5 mg/kg Dox 1 h after administration of Liv-52 or distilled water. The procedure was repeated daily for 7 days. On day 8, the animals were sacrificed, and serum and tissue biochemical and histopathological assays were performed. The malondialdehyde level was increased significantly in the DG group, while glutathione and superoxide dismutase levels were significantly lower in the DG group compared to the LD and CG groups. The highest levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were found in the DG group, while the lowest levels were found in the CG group, which exhibited levels similar to those of the LD group. Treatment with Liv-52 prior to Dox treatment reduced the histopathologic changes in the Dox group. Therefore, pre-treatment with Liv-52 protected against Dox induced oxidative stress and hepatotoxicity.
Collapse
Affiliation(s)
- Nilgun Yildirim
- Department of Medical Oncology, Firat University Faculty of Medicine, Elazıg, Turkey
| | - Azmi Lale
- Department of Surgical Oncology, Firat University Faculty of Medicine, Elazıg, Turkey
| | - Gulce Naz Yazıcı
- Department of Histology and Embryology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Mukadder Sunar
- Department of Anatomy, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Mehmet Aktas
- Department of Biochemistry, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Adelet Ozcicek
- Department of Internal Medicine, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Bahadır Suleyman
- Department of Pharmacology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Fatih Ozcicek
- Department of Internal Medicine, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| |
Collapse
|
9
|
Lee KM, Hwang YJ, Jung GS. Gemigliptin exerts protective effects against doxorubicin-induced hepatotoxicity by inhibiting apoptosis via the regulation of fibroblast growth factor 21 expression. Biochem Biophys Res Commun 2022; 626:135-141. [DOI: 10.1016/j.bbrc.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
|
10
|
Laraba M, Tachour SH, Belbache H, Boubekri N, Djebbari R, Benayache F, Benayache S, Zama D. Hepatoprotective potential of the n-butanol extract of Moricandia arvensis from Algeria against doxorubicin induced toxicity in Wistar albino rats. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Ibrahim Fouad G, Ahmed KA. Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc Toxicol 2022; 22:152-166. [PMID: 34837640 DOI: 10.1007/s12012-021-09710-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023]
Abstract
Doxorubicin (DOX) is one of the widely used anti-tumor drugs. However, DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) are among the side effects that limited its therapeutic efficiency and clinical applicability. This study aimed to investigate the cardioprotective and hepatoprotective potentials of curcumin (CMN)-a bioactive polyphenolic compound-in alleviating DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) in male rats. A single intraperitoneal (i.p.) dose of DOX (20 mg/kg) was used to induce DIC and DIH. DOX-intoxicated rats were co-treated with CMN (100 mg/kg, oral) for 10 days before and 5 days after a single dose of DOX. We studied the anti-inflammatory and anti-oxidative activities of CMN on biochemical and immunohistochemical aspects. DOX disrupted cardiac and hepatic functions and stimulated oxidative stress and inflammation in both tissues that was confirmed biochemically and immunohistochemically. DOX enhanced inflammatory interferon-gamma (IFN-γ) and upregulated immunoexpression of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α). DOX induced structural alterations in both cardiac and hepatic tissues. CMN demonstrated cardioprotective potential through reducing cardiac troponin I (cTn1) and aspartate amino transaminase (AST). In addition, CMN significantly ameliorated liver function through decreasing alanine amino transaminase (ALT) and, gamma-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG). CMN demonstrated anti-inflammatory potential through decreasing IFN-γ levels and immunoexpression of iNOS, NF-κB, and TNF-α. Histopathologically, CMN restored DOX-associated cardiac and liver structural alterations. CMN showed anti-oxidative and anti-inflammatory potentials in both the cardiac and hepatic tissues. In addition, cTn1, IFN-γ, and AST could be used as blood-based biomarkers.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
12
|
Khodir S, Alafify A, Omar E, Al-Gholam M. Protective Potential of Ginseng and/or Coenzyme Q10 on Doxorubicin-induced Testicular and Hepatic Toxicity in Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Although doxorubicin (DOX) is a successful cancer chemotherapeutic, side effects limit the clinical utility of DOX-based therapy, including male infertility and hepatotoxicity.
Objective: To evaluate the testicular and hepatoprotective effect of ginseng and/or coenzyme Q10 (CoQ10) in rats exposed to DOX and the possible underlying mechanisms.
Materials and Methods: Fifty adult male albino rats were divided into (10/group), control, DOX group, DOX/Gin group, DOX/CoQ10 group and DOX/Gin+CoQ10 group. Serum testosterone, serum liver enzymes, fasting serum cholesterol and triglyceride (TG), tissue malondialdehyde (MDA), tissue superoxide dismutase (SOD), serum tumor necrosis factor-alpha (TNF-α), serum interleukin 6, serum interleukin 10, nuclear factor E2‐related factor 2 (Nrf2) gene expression in liver and testis and organ indices were measured. Histopathological and immunohistochemical assessments of apoptotic marker kaspase3 in testis and liver were also performed.
Results DOX-induced toxicity is associated with a significant decrease in serum testosterone, testis and liver index values, testicular and hepatic SOD, testicular and hepatic Nrf2 gene expression and serum interleukin 10. However, there was a significant increase in serum liver enzymes, serum cholesterol and TG, testicular and hepatic MDA, serum TNF-α and serum interleukin 6 when compared with the control group. The combination of ginseng and CoQ10 resulted in significant improvement of DOX-induced changes when compared with other treated groups.
Conclusion: Ginseng and CoQ10 have valuable therapeutic effects on DOX-induced testicular and hepatic toxicity via up-regulation of Nrf2 gene expression, inhibition of apoptosis, anti-oxidant, anti-inflammatory and hypolipidemic effects.
Collapse
|
13
|
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol 2021; 36:e22962. [PMID: 34766659 DOI: 10.1002/jbt.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in the treatment of various cancer types. DOX toxic side effects include neuronopathy and memory deficits. We investigated the effect of the antioxidant luteolin (LUT: 50 or 100 mg/kg; per os) on DOX (2 mg/kg; intraperitoneal)-induced oxidative stress (OS), inflammation, and apoptosis in the brain of Wistar rats for 14 days. We observed that LUT reduced DOX-mediated increase in OS biomarkers-catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase. LUT increased glutathione and total sulphydryl levels and alleviated DOX-induced increases in the levels of reactive oxygen and nitrogen species, lipid peroxidation, myeloperoxidase, nitric oxide, tumor necrosis factor-α, and interleukin-1β (IL-1β). Additionally, LUT suppressed caspase-3 activity, increased anti-inflammatory cytokine-IL-10 level, and reduced pathological lesions in the examined organs of rats cotreated with LUT and DOX. Collectively, cotreatment with LUT lessened DOX-induced neurotoxicity. Supplementation of LUT as a chemopreventive agent might be useful in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- CRMB Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Akin AT, Öztürk E, Kaymak E, Karabulut D, Yakan B. Therapeutic effects of thymoquinone in doxorubicin-induced hepatotoxicity via oxidative stress, inflammation and apoptosis. Anat Histol Embryol 2021; 50:908-917. [PMID: 34494664 DOI: 10.1111/ahe.12735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Cancer is a lethal disease that is characterized by uncontrolled cell division and proliferation, and it results in death in many organisms. Doxorubicin (DOX) is a therapeutic agent used for treatment of many cancer types, but it induces serious hepatotoxicity. In this study, we aimed to determine possible hepato-therapeutic effects of thymoquinone (THQ) on DOX-induced hepatotoxicity in rats. Rats were divided into five groups (n = 8): Control, THQ (10 mg/kg/day/i.p for 14 days), Olive Oil (equal volume with THQ for 14 days), DOX (single dose, 15 mg/kg/i.p on 7th day) and DOX + THQ (10 mg/kg/day/i.p and DOX 15 mg/kg/i.p on 7th day). At the end of the experiment, liver tissues were extracted and evaluated histopathologically. eNOS, iNOS and Cas-3 immunostaining were performed to determine the expression levels. TUNEL method was used to determine apoptotic index. Furthermore, liver tissue total antioxidant status (TAS), total oxidant status (TOS), TNF-α and TGF-β levels were measured by ELISA assay. The DOX group showed histopathological deterioration compared to Control group. Moreover, apoptotic index, eNOS, iNOS and Cas-3 expressions increased in DOX group. While TAS level of the DOX group decreased, TOS level increased. TNF-α and TGF-β levels increased in DOX group. However, there was improvement in DOX + THQ group compared to DOX group. Moreover, apoptotic cell number, eNOS, iNOS and Cas-3 expressions decreased in DOX + THQ group compared to DOX group. We concluded that thymoquinone can be used as a phytotherapeutic for reducing DOX-induced liver damage.
Collapse
Affiliation(s)
- Ali Tuğrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Emel Öztürk
- Histology-Embryology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Derya Karabulut
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Doxorubicin and doxorubicin-loaded nanoliposome induce senescence by enhancing oxidative stress, hepatotoxicity, and in vivo genotoxicity in male Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1803-1813. [PMID: 34219194 DOI: 10.1007/s00210-021-02119-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
The senescence phenomenon is historically considered as a tumor-suppressing mechanism that can permanently arrest the proliferation of damaged cells, and prevent tumor eradication by activating cell cycle regulatory pathways. Doxorubicin (DX) as an antineoplastic agent has been used for the treatment of solid and hematological malignancies for a long time, but its clinical use is limited due to irreversible toxicity on off-target tissues. Thereby, the encapsulation of plain drugs in a vehicle may decrease the side effects while increasing their permeability and availability in target cells. Here, we aimed to investigate and compare the effects of DX and DX-loaded nanoliposome (NLDX) on the induction of senescence via assessment of the occurrence of apoptosis/necrosis, genomic damage, oxidative stress, and liver pathologies. The study groups included DX (0.75, 0.5, 0.1 mg/kg/BW), NLDX groups (0.1, 0.05, 0.025 mg/kg/BW), and an untreated control group. The liver tissues were used to investigate the oxidative stress parameters and probable biochemical and histopathological alterations. Annexin V/PI staining was carried out to find the type of cellular death in the liver tissue of healthy rats exposed to different concentrations of DOX and LDOX. Data revealed that the highest dose of NLDX (0.1 mg/kg/BW) could significantly induce cellular senescence throughout significant increasing the level of genotoxic damage (p < 0.0001) and the oxidative stress (p < 0.001) compared with a similar dose of DX, in which the obtained results were further confirmed by flow cytometry and histopathological assessments of the liver tissue. This investigation provides sufficient evidence of improved therapeutic efficacy of NLDX compared with plain DX in male Wistar rats.
Collapse
|
16
|
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol 2021; 40:1656-1672. [PMID: 33827303 DOI: 10.1177/09603271211006171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin is an effective anti-neoplastic agent; the reported toxicities of DOX limit its use. Luteolin is a polyphenolic phytochemical that exhibits beneficial biological effects via several mechanisms. We investigate luteolin protective effects on hepatorenal toxicity associated with doxorubicin treatment in rats. For 2 weeks, randomly assigned rat cohorts were treated as follows: control, luteolin (100 mg/kg; per os), doxorubicin alone (2mg/kg; by intraperitoneal injection), co-treated cohorts received luteolin (50 and 100 mg/kg) in addition to doxorubicin. Treatment with doxorubicin alone significantly (p < 0.05) increased biomarkers of hepatorenal toxicities in the serum. Doxorubicin also reduced relative organ weights, antioxidant capacity, and anti-inflammatory cytokine interleukine-10. Doxorubicin also increased reactive oxygen and nitrogen species, lipid peroxidation, pro-inflammatory-interleukin-1β and tumour necrosis factor-α-cytokine, and apoptotic caspases-3 and -9). Morphological damage accompanied these biochemical alterations in the rat's liver and kidney treated with doxorubicin alone. Luteolin co-treatment dose-dependently abated doxorubicin-mediated toxic responses, improved antioxidant capacity and interleukine-10 level. Luteolin reduced (p < 0.05) lipid peroxidation, caspases-3 and -9 activities and marginally improved rats' survivability. Similarly, luteolin co-treated rats exhibited improvement in hepatorenal pathological lesions observed in rats treated with doxorubicin alone. In summary, luteolin co-treatment blocked doxorubicin-mediated hepatorenal injuries linked with pro-oxidative, inflammatory, and apoptotic mechanisms. Therefore, luteolin can act as a chemoprotective agent in abating toxicities associated with doxorubicin usage and improve its therapeutic efficacy.
Collapse
Affiliation(s)
- S E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Lewu
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - U O Arunsi
- School of Medicine, Cancer Immunology and Biotechnology, Department of Biosciences, University of Nottingham, UK
| | - A K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, 1372Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Investigation of the Therapeutic Effects of Chloroquine in Adriamycin-Induced Hepatotoxicity. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study is to investigate the therapeutic effects of Chloroquine (CLQ) against Adriamycin (ADR) induced hepatotoxicity. ADR is a chemotherapeutic agent used in the treatment of many cancer types, but it causes hepatotoxicity. CLQ is used as an anti-inflammatory drug in the treatment of malaria, rheumatoid arthritis, and pneumonia caused by Covid-19. Rats were divided into four groups: Control group, ADR group (2 mg/kg Adriamycin, one in three days for 30 days, i.p.), CLQ group (50 mg/kg Chloroquine, per day for 30 days, i.p.), ADR+CLQ (2 mg/kg Adriamycin, one in three days for 30 days, i.p. and 50 mg/ kg Chloroquine, per day for 30 days, i.p.). Animals were sacrificed, and liver tissues were extracted for further examinations. Histopathological changes in liver tissues were scored and IL-17 immunostaining was performed to determine the expression levels among experimental groups. Bodyweights in the ADR group decreased significantly compared to the Control group and CLQ group. Furthermore, bodyweight in ADR+CLQ group was significantly higher compared to ADR group. The histopathological score was significantly higher in ADR group when compared to Control and CLQ group while CLQ administrations reduced the damage induced by ADR in the ADR+CLQ group. IL-17 immunoreactivity was considerably increased in the ADR group. On the other hand, IL-17 expressions of ADR+CLQ were substantially less compared to ADR group. We suggest that CLQ can be used as a therapeutic agent to reduce the detrimental effects of ADR, thanks to its anti-inflammatory properties.
Collapse
|
18
|
Owumi SE, Nwozo SO, Arunsi UO, Oyelere AK, Odunola OA. Co-administration of Luteolin mitigated toxicity in rats' lungs associated with doxorubicin treatment. Toxicol Appl Pharmacol 2021; 411:115380. [PMID: 33358696 DOI: 10.1016/j.taap.2020.115380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), is a drug against lung malignancies with undesirable side effect including oxidative, inflammatory and apoptotic effects. Luteolin (LUT), present in fruits and vegetables is pharmacologically active against oxido-inflammatory and apoptotic responses. The present study examined the effect of LUT on DOX-induced lungs and blood dysfunction in Wistars rat (sex: male; 10 weeks old, 160 ± 5 g). Randomly grouped (n = 10) rats were treated as follows: control, LUT alone (100 mg/kg; per os), DOX (2 mg/kg; i. p), and co-treated rats with LUT (50 or 100 mg/kg) and DOX for two consecutive weeks. DOX alone adversely altered the final body and relative organ weights, red and white blood cell and platelet counts. DOX significantly (p > 0.05) reduced lungs antioxidant capacity, and anti-inflammatory cytokines; increased biomarkers of oxidative stress, caspase-3 activity, and pro-inflammatory cytokine. Morphological damages accompanied these biochemical alterations in the lung of experimental rats. Co-treatment with LUT, dose-dependently reversed DOX-mediated changes in rats' survival, toxic responses, and diminished oxidative stress in rat's lungs. Furthermore, co-treatment with LUT resulted in the reduction of pro-inflammatory cytokines and apoptotic biomarkers, increased red and white blood cell, platelet counts and abated pathological injuries in rat lungs treated with DOX alone. In essence, our findings indicate that LUT dose-dependently mitigated DOX-induced toxicities in the lungs and haematopoietic systems. Supplementation of patients on DOX-chemotherapy with phytochemicals exhibiting antioxidant activities, specifically LUT, could circumvent the onset of unintended toxic responses in the lungs and haematopoietic system exposed to DOX.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria.
| | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham NG8 1AF, UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
19
|
Geng C, Cui C, Wang C, Lu S, Zhang M, Chen D, Jiang P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS OMEGA 2021; 6:358-366. [PMID: 33458487 PMCID: PMC7807767 DOI: 10.1021/acsomega.0c04677] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Doxorubicin (DOX) is widely used to treat solid tumors, but its use is limited by its severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity. Metabolomic studies on DOX-induced toxicity are mainly focused on alterations in the heart and kidney, but systematic research on multiple matrices (serum, heart, liver, brain, and kidney) is rare. Thus, in our study, gas chromatography-mass spectrometry analysis of main targeted tissues (serum, heart, liver, brain, and kidney) was used to systemically evaluate the toxicity of DOX. Multivariate analyses, including orthogonal projections to the latent structure and t-test, revealed 21 metabolites in the serum, including cholesterol, d-glucose, d-lactic acid, glycine, l-alanine, l-glutamic acid, l-isoleucine, l-leucine, l-proline, l-serine, l-tryptophan, l-tyrosine, l-valine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), N-methylphenylethanolamine, oleamide, palmitic acid, pyroglutamic acid, stearic acid, and urea. In the heart, perturbed metabolites included 3-methyl-1-pentanol, cholesterol, d-glucose, d-lactic acid, glycerol, glycine, l-alanine, l-valine, MG (16:0/0:0/0:0), palmitic acid, phenol, propanoic acid, and stearic acid. For the liver, DOX exposure caused alterations of acetamide, acetic acid, d-glucose, glycerol, l-threonine, palmitic acid, palmitoleic acid, stearic acid, and urea. In the brain, metabolic changes involved 2-butanol, carbamic acid, cholesterol, desmosterol, d-lactic acid, l-valine, MG (16:0/0:0/0:0), palmitic acid, and stearic acid. In the kidney, disturbed metabolites were involved in cholesterol, glycerol, glycine, l-alanine, MG (0:0/18:0/0:0), MG (16:0/0:0/0:0), and squalene. Complementary evidence by multiple matrices revealed disturbed pathways concerning amino acid metabolism, energy metabolism, and lipid metabolism. Our results may help to systematically elucidate the metabolic changes of DOX-induced toxicity and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Chunmei Geng
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Changmeng Cui
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Changshui Wang
- Department
of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Shuxin Lu
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Maokun Zhang
- Department
of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Dan Chen
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Department
of Pharmacy, Jining No 1 People’s Hospital, Jining Medical University, Jining 272000, China
- . Phone: +86 537 2106208. Fax: +86 537 2106208
| |
Collapse
|
20
|
Rakshit S, Nirala SK, Bhadauria M. Gallic Acid Protects from Acute Multiorgan Injury Induced by Lipopolysaccharide and D-galactosamine. Curr Pharm Biotechnol 2021; 21:1489-1504. [PMID: 32538720 DOI: 10.2174/1389201021666200615165732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Secondary metabolites of plants, the polyphenols, play a vital role in protection from many health problems in human beings. Structurally favored phytochemicals may be studied to protect multiorgan injury. At pharmacological doses, gallic acid is nontoxic to mammals and is generally absorbed in the intestine. AIMS In this present study, gallic acid was evaluated for its protective efficacy against Lipo Polysaccharide (LPS) and d-Galactosamine (D-GalN) induced multiorgan injury, i.e., liver, kidney and brain. METHODS Three different doses of gallic acid (5, 10 and 20 mg/kg p.o.) were administered to the experimental animals for 6 consecutive days, followed by exposure to LPS (50 μg/kg I.P.) and D-GalN (300 mg/kg I.P.) on the 6th day. RESULTS Exposure to LPS and D-GalN resulted in increased oxidative stress and proinflammatory cytokines. Altered hematology and serology due to LPS and D-GalN were restored towards control by gallic acid. Declined antioxidants such as reduced glutathione, superoxide dismutase and catalase due to injurious effects of LPS and D-GalN were rejuvenated by gallic acid. DISCUSSION Exposure to LPS and D-GalN severely increased lipid peroxidation, CYP2E1 activity and tissue lipids while lowered protein content. Gallic acid restored all these parameters towards control in dose dependent manner and 20 mg/kg dose provided the best protection. Histological study showed improved histoarchitecture of liver, kidney and brain that supported biochemical endpoints. CONCLUSION Gallic acid minimized oxidative stress and provided best protection at 20 mg/kg dose against LPS and D-GalN induced multi organ acute injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| | - Satendra K Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development Guru Ghasidas University, Bilaspur 495009 (C.G.), India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| |
Collapse
|
21
|
Esmaeilzadeh M, Heidarian E, Shaghaghi M, Roshanmehr H, Najafi M, Moradi A, Nouri A. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. PHARMACEUTICAL BIOLOGY 2020; 58:590-596. [PMID: 32633182 PMCID: PMC7470116 DOI: 10.1080/13880209.2020.1777169] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/28/2020] [Indexed: 05/20/2023]
Abstract
CONTEXT Diclofenac (DIC) is an NSAID and consumption of this drug creates side effects such as liver injury. Gallic acid (GA), a natural component of many plants, is used as an antioxidant agent. OBJECTIVE This study assesses the hepatoprotective effects of GA in the rat model of DIC-induced liver toxicity. MATERIALS AND METHODS In this research, the male Wistar rats were separated into five groups (n = 6). Group 1, control, received normal saline (1 mL/kg bw, i.p.); Group 2 received DIC-only (50 mg/kg bw, i.p.); Groups 3, received DIC (50 mg/kg bw, i.p.) plus silymarin (100 mg/kg bw, po), groups 4 and 5 received DIC (50 mg/kg bw, i.p.) plus GA (50 and 100 mg/kg, po, respectively). RESULTS The data demonstrated that the liver levels of the GSH, GPx, SOD, and CAT significantly reduced and the levels of the serum protein carbonyl, AST, ALP, ALT, total bilirubin, MDA, serum IL-1β, and the liver IL-1β gene expression were remarkably increased in the second group compared to control group. On the other hand, treatment with GA led to a significant elevation in GSH, GPx, SOD, CAT, and a significant decrease in protein carbonyl, AST, ALP, ALT, total bilirubin, MDA, serum IL-1β, and gene expression of IL-1β in comparison with the second group. Histological changes were also ameliorated by GA oral administration. Discussion and Conclusions: The data show that the oral administration of GA could alleviate the noxious effects of DIC on the antioxidant defense system and liver tissue.
Collapse
Affiliation(s)
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnoosh Shaghaghi
- Department of Biology, Faculty of Basic Science, Tehran Payamenoor University, Tehran, Iran
| | - Hoshang Roshanmehr
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nouri
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- CONTACT Ali Nouri , Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles ( 99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 2020; 586:119514. [PMID: 32565281 DOI: 10.1016/j.ijpharm.2020.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 μg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.
Collapse
Affiliation(s)
- Walaa I El-Ghareb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Pharmacology Department, College of Pharmacy, Al-Bayan University, 10006 Baghdad, Iraq
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mina Ibrahim Tadros
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
23
|
Öztürk E, Kaymak E, Akin AT, Karabulut D, Ünsal HM, Yakan B. Thymoquinone is a protective agent that reduces the negative effects of doxorubicin in rat testis. Hum Exp Toxicol 2020; 39:1364-1373. [PMID: 32394736 DOI: 10.1177/0960327120924108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is used for treatment of many cancer types. Thymoquinone (THQ) is a powerful antioxidant agent used for reducing side effects of several drugs. The aim of this study is to determine possible therapeutic effects of THQ on doxorubicin-induced testicular toxicity in rats. METHODS Rats were divided into five groups (n = 8): control, THQ, olive oil, DOX (a single dose of 15 mg/kg intraperitoneally (i.p.) on seventh day of the experiment), and DOX + THQ (10 mg/kg THQ per day and 15 mg/kg DOX i.p. on seventh day). Animals were euthanized, and testis tissues were evaluated histopathologically. Caspase 3 and HSP90 immunostaining were performed to determine the expression levels of these proteins among groups. Terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick-end labeling method was used for evaluation of apoptotic index. Moreover, serum testosterone levels and total antioxidant status (TAS) and total oxidant status (TOS) in testicular tissue were measured by ELISA assay. RESULTS The DOX group had histopathological deterioration compared to the control group. There was an increase in apoptotic index, caspase 3 and HSP90 expressions in the DOX group. While TAS level of the DOX group decreased, TOS level increased when compared with the other groups. Serum testosterone levels in the DOX group decreased compared to the control group. However, there was improvement in testicular tissue in DOX + THQ group compared to the DOX group. There was a decrease in apoptotic index, caspase 3, and HSP90 expressions in DOX + THQ group compared to the DOX group. Testosterone level of DOX + THQ significantly increased compared to the DOX group. CONCLUSION We suggest that THQ can be used as a protective agent to reduce the toxic effects of DOX.
Collapse
Affiliation(s)
- E Öztürk
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - E Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - A T Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - D Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - H Murat Ünsal
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - B Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
24
|
Wali AF, Rashid S, Rashid SM, Ansari MA, Khan MR, Haq N, Alhareth DY, Ahmad A, Rehman MU. Naringenin Regulates Doxorubicin-Induced Liver Dysfunction: Impact on Oxidative Stress and Inflammation. PLANTS 2020; 9:plants9040550. [PMID: 32344607 PMCID: PMC7238146 DOI: 10.3390/plants9040550] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Doxorubicin (Dox) is an operational and largely used anticancer drug, used to treat an array of malignancies. Nonetheless, its beneficial use is constrained due to its renal and hepatotoxicity dose dependently. Numerous research findings favor the use of antioxidants may impact Dox-induced liver injury/damage. In the current study, Wistar rats were given naringenin (50 and 100 mg/kg b.wt.) orally for 20 days as prophylactic dose, against the hepatotoxicity induced by single intraperitoneal injection of Dox (20 mg/kg b.wt.). Potency of naringenin against the liver damage caused by Dox was assessed by measuring malonyl aldehyde (MDA) as a by-product of lipid peroxidation, biochemical estimation of antioxidant enzyme system, reactive oxygen species (ROS) level, and inflammatory mediators. Naringenin-attenuated ROS production, ROS-induced lipid peroxidation, and replenished reduced antioxidant armory, namely, catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). Naringenin similarly diminished expression of Cox-2 and levels of NF-κB and other inflammatory molecules induced by the Dox treatment. Histology added further evidence to the defensive effects of naringenin on Dox-induced liver damage. The outcomes of the current study reveal that oxidative stress and inflammation are meticulously linked with Dox-triggered damage, and naringenin illustrates the potential effect on Dox-induced hepatotoxicity probably through diminishing the oxidative stress and inflammation.
Collapse
Affiliation(s)
- Adil Farooq Wali
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, UAE;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, J&K 190006, India;
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Mohammad Rashid Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Dhafer Yahya Alhareth
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.U.R.); Tel.: +96-6114670765 (A.A. & M.U.R.)
| | - Muneeb U. Rehman
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, J&K 190006, India;
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.U.R.); Tel.: +96-6114670765 (A.A. & M.U.R.)
| |
Collapse
|
25
|
Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020; 173:113551. [DOI: 10.1016/j.bcp.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
|
26
|
Molehin OR. Alleviation of doxorubicin-induced nephrotoxicity byClerodendrum volubileleaf extract in Wistar rats: A preliminary study. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction:Doxorubicin (DOX), a well-known chemotherapeutic drug, has been reported to induce numerous toxic side effects including renal toxicity. This preliminary study was designed to investigate the ameliorative effects of methanolic leaf extract ofClerodendrum volubile(MECV) against DOX-induced nephrotoxicity in rats.Methods:Thirty male rats were divided into five groups; (a) Control group: rats were given 0.9% NaCl as vehicle, (b) DOX group: a single dose of DOX (25 mg/kg; i.p.) was administered and the rats were sacrificed 4 days after DOX injection, (c-e) Methanolic extract of C. volubile (MECV)-treated DOX groups: rats were given MECV (at the doses of 125, 250 and 500 mg/kg/d), respectively for 12 consecutive days, 8 days before and 4 days after the DOX administration.Results:DOX injection caused a significant increase (P<0.05) in serum creatinine and urea levels. The levels of renal antioxidant parameters: glutathione peroxidase, superoxide dismutase (SOD), catalase (CAT) and reduced glutathione were significantly (P<0.05) decreased in DOX-intoxicated rats with concomitant elevation of malondialdehyde level. Pretreatment with MECV restored antioxidant status, attenuated oxidative stress and improved kidney function markers. Pre-treatment with MECVprotected renal tissues against DOX-induced nephrotoxicity.Conclusion:The ameliorative effects ofC. volubileleaves on these renal biochemical parameters may be via its antioxidant action and may serve as a novel combination agent with DOX to limit its renal damage.
Collapse
Affiliation(s)
- Olorunfemi Raphael Molehin
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, P.M.B., 5363, Ado-Ekiti, 360001, Nigeria
| |
Collapse
|
27
|
Wu P, Yin D, Liu J, Zhou H, Guo M, Liu J, Liu Y, Wang X, Liu Y, Chen C. Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer. NANOSCALE 2019; 11:19520-19528. [PMID: 31573595 DOI: 10.1039/c9nr05791a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The therapeutic efficacy of anti-cancer nanomedicines is generally constrained due to limited accumulation in the solid tumors. In this study, we developed a biomimetic nano-carrier to enhance the chemo-therapeutic efficacy of doxorubicin and icotinib in a chemo-resistant non-small cell lung cancer (NSCLC) cell line harboring a mutation in the epidermal growth factor receptor (EGFR). The unique nanomedicine was prepared by coating with targeting cancer cell membrane proteins as highly specific ligands. The resulting biomimetic nanoparticles were highly stable and exhibited superior homologous targeting ability in vitro compared with control groups. In a mouse EGFR-mutated NSCLC xenograft model, intravenous injection of the biomimetic nanomedicine led to a high tumour inhibition rate (87.56%). Histopathological analysis demonstrated that the biomimetic nanomedicine had minimal side effects. Taken together, a cancer cell membrane-based biomimetic drug carrier can significantly enhance drug accumulation and improve therapeutic efficacy in cancers.
Collapse
Affiliation(s)
- Pengying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Dongtao Yin
- Department of Thoracic Surgery, General Hospital of the Chinese People's Liberation Army, Beijing, 100853, China and Department of Thoracic Surgery, Rocket Force Characteristic Medical Center of the Chinese People's Liberation Army, Beijing, 100088, China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. and The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yang Liu
- Department of Thoracic Surgery, General Hospital of the Chinese People's Liberation Army, Beijing, 100853, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
28
|
Dos Santos da Rocha P, de Araújo Boleti AP, do Carmo Vieira M, Carollo CA, da Silva DB, Estevinho LM, Dos Santos EL, de Picoli Souza K. Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220:36-46. [PMID: 30797984 DOI: 10.1016/j.cbpc.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Schinus terebinthifolius Raddi, commonly known as Brazilian peppertree, is a plant species widely used in Brazilian traditional medicine for various purposes. The objective of this study was to assess the microbiological quality, safety, chemical profile as well as antioxidant and antidiabetic potentials of different parts of S. terebinthifolius. Microbiological analysis of the methanolic extracts of the roots (MESR), stem bark (MESB) and leaves (MESL) of S. terebinthifolius showed no microbial growth. The concentrations of phenolic compounds, phenolic acids and flavonoids were determined by spectrophotometry. The phenolic compounds of the MESL were identified by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS). The antioxidant activities of the extracts were analyzed by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS+), fluorescence recovery after photobleaching (FRAP), reducing power, β-carotene bleaching and malondialdehyde (MDA) assays in human erythrocytes. The antidiabetic properties of the extracts were demonstrated in vitro by their inhibition of the α-glucosidase enzyme and their anti-glycation activity via fructose and glyoxal. After showing no acute toxicity in vivo, MESL was able to lower postprandial glycemia after glucose overload in normoglycemic mice as well as the water and feed intake, liver weight, glycemia and serum levels of glycated hemoglobin, aspartate transaminase (AST) and alanine transaminase (ALT) in diabetic mice. Overall, S. terebinthifolius extracts showed microbiological safety along with antioxidant and antidiabetic activities, likely mediated by its chemical constituents, such as gallic acid, gallotannins and glycosylated flavonols.
Collapse
Affiliation(s)
- Paola Dos Santos da Rocha
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Ana Paula de Araújo Boleti
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Maria do Carmo Vieira
- Agricultural Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Leticia Miranda Estevinho
- Polytechnic Institute of Bragança, Agricultural College of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Edson Lucas Dos Santos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Kely de Picoli Souza
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
29
|
Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol 2019; 85:267-274. [PMID: 29673779 PMCID: PMC9442874 DOI: 10.1016/j.bjorl.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. Objective The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Methods Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15 mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100 mg/kg for five consecutive days. Cisplatin + gallic acid group received intraperitoneal gallic acid at 100 mg/kg for five consecutive days and a single intraperitoneal dose of 15 mg/kg cisplatin at 3rd day. A control group received 1 mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. Results In cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the cisplatin + gallic acid group, this biochemical, histopathological and functional changes were reversed. Conclusion In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic emissions test results, biochemical findings and immunohistochemical analyses.
Collapse
|
30
|
Gu Y, Ju A, Jiang B, Zhang J, Man S, Liu C, Gao W. Yiqi Fumai lyophilized injection attenuates doxorubicin-induced cardiotoxicity, hepatotoxicity and nephrotoxicity in rats by inhibition of oxidative stress, inflammation and apoptosis. RSC Adv 2018; 8:40894-40911. [PMID: 35557896 PMCID: PMC9091596 DOI: 10.1039/c8ra07163b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Doxorubicin (DOX) is one of the most effective antineoplastic drugs, however, its organ toxicity inhibits the clinical utility. This study was aimed at investigating the protective effects of Yiqi Fumai lyophilized injection (YQFM) against DOX-induced tissue injury and exploring the mechanisms which mediated reactive oxygen species (ROS), inflammation and apoptosis. The experiment was as follows: rats were subjected to an intraperitoneal injection (i.p.) of YQFM (0.481 g kg-1, i.p.) for 12 days; DOX (5 mg kg-1, i.p.) was administered on the 4th, 8th and 12th days to achieve a cumulative dose of 15 mg kg-1. Pretreatment of YQFM significantly ameliorated intracellular damage and dysfunction of the heart, liver and kidneys via decreasing activities of injury indexes. The levels of lipid peroxidation and glutathione depletion were clearly reduced following YQFM pretreatment, meanwhile the activities of glutathione peroxidase, superoxide dismutase, and catalase were elevated. Additionally administering YQFM could mitigate the cardiotoxicity, hepatotoxicity and nephrotoxicity via reducing levels of inflammatory factors and decreasing apoptosis. Accordingly, this study indicated that YQFM attenuated DOX-induced toxicity by ameliorating organ function, decreasing ROS production, and preventing excessive inflammation and apoptosis.
Collapse
Affiliation(s)
- Yue Gu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited Tianjin 300410 China
| | - Bingjie Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces Tianjin 300309 China +86-22-84876773
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-60601265
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics Tianjin 300193 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| |
Collapse
|
31
|
Altınkaynak Y, Kural B, Akcan BA, Bodur A, Özer S, Yuluğ E, Munğan S, Kaya C, Örem A. Protective effects of L-theanine against doxorubicin-induced nephrotoxicity in rats. Biomed Pharmacother 2018; 108:1524-1534. [DOI: 10.1016/j.biopha.2018.09.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
|
32
|
Ahmadian M, Dabidi Roshan V, Leicht AS. Age-related effect of aerobic exercise training on antioxidant and oxidative markers in the liver challenged by doxorubicin in rats. Free Radic Res 2018; 52:775-782. [DOI: 10.1080/10715762.2018.1470328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Ahmadian
- Department of Physical Education and Sport Sciences, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| | - Valiollah Dabidi Roshan
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Anthony S. Leicht
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
33
|
Schlickmann F, Boeing T, Mariano LNB, da Silva RDCMVDAF, da Silva LM, de Andrade SF, de Souza P, Cechinel-Filho V. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:649-655. [PMID: 29663016 DOI: 10.1007/s00210-018-1502-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
Abstract
Although present in the leaves of Mimosa bimucronata (DC.) and many other medicinal plants commonly used to augment urinary volume excretion, the effects of gallic acid as a diuretic agent remain to be studied. Wistar rats were orally treated with vehicle, hydrochlorothiazide, or gallic acid. The effects of gallic acid in the presence of hydrochlorothiazide, furosemide, amiloride, L-NAME, atropine, and indomethacin were also investigated. Diuretic index, pH, conductivity, and electrolyte excretion were evaluated at the end of the experiment (after 8 or 24 h). Gallic acid induced diuretic and saluretic (Na+ and Cl-) effects, without interfering with K+ excretion, when orally given to female and male rats at a dose of 3 mg/kg. These effects were associated with increased creatinine and conductivity values while pH was unaffected by any of the treatments. Plasma Na+, K+, and Cl- levels were not affected by any of the acute treatments. The combination with hydrochlorothiazide or furosemide was unable to intensify the effects of gallic acid when compared with the response obtained with each drug alone. On the other hand, the treatment with amiloride plus gallic acid amplified both diuresis and saluresis, besides to a marked potassium-sparing effect. Its diuretic action was significantly prevented in the presence of indomethacin, a cyclooxygenase inhibitor, but not with the pretreatments with L-NAME or atropine. Although several biological activities have already been described for gallic acid, this is the first study demonstrating its potential as a diuretic agent.
Collapse
Affiliation(s)
- Fabile Schlickmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Luisa Nathália Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | | | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil.
| | - Valdir Cechinel-Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Itajaí, SC, 88302-901, Brazil
| |
Collapse
|