1
|
Long AW, Xu H, Santich BH, Guo H, Hoseini SS, de Stanchina E, Cheung NKV. Heterodimerization of T cell engaging bispecific antibodies to enhance specificity against pancreatic ductal adenocarcinoma. J Hematol Oncol 2024; 17:20. [PMID: 38650005 PMCID: PMC11036555 DOI: 10.1186/s13045-024-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.
Collapse
Affiliation(s)
- Alan W Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | | | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Srivastava I, Moitra P, Brent KM, Wang K, Pandit S, Altun E, Pan D. Biodegradable and switchable near-infrared fluorescent probes for hypoxia detection. Nanomedicine (Lond) 2023; 18:1061-1073. [PMID: 37610080 DOI: 10.2217/nnm-2023-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Aims: Among solid tumors, hypoxia is a common characteristic and responsible for chemotherapeutic resistance. Hypoxia-sensitive imaging probes are therefore essential for early tumor detection, growth monitoring and drug-response evaluation. Despite significant efforts, detecting hypoxic oxygen levels remains challenging. Materials & methods: This paper demonstrates the use of an amine-rich carbon dot probe functionalized with an imidazole group that exhibits reversible fluorescence switching in normoxic and hypoxic environments. Results & conclusion: We demonstrate the ability to emit near-infrared light only under hypoxic conditions. The probes are found to be biodegradable in the presence of human digestive enzymes such as lipase. Ex vivo tissue imaging experiments revealed promising near-infrared signals even at a depth of 5 mm for the probe under ex vivo imaging conditions.
Collapse
Affiliation(s)
- Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kurtis M Brent
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Kevin Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Subhendu Pandit
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Esra Altun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| |
Collapse
|
3
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET. BIOPHYSICAL REPORTS 2023; 3:100110. [PMID: 37251213 PMCID: PMC10209493 DOI: 10.1016/j.bpr.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the three-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated-intensified charge-coupled device, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of a near-infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI-FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required nine measurements (six of which are used for calibration) acquired from three mice, MFLI-FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
4
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. in vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525411. [PMID: 36747671 PMCID: PMC9900789 DOI: 10.1101/2023.01.24.525411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the 3-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated ICCD, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of near infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required 9 measurements (6 of which are used for calibration) acquired from three mice, MFLI FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Elephas, 1 Erdman Pl., Madison, WI 53705, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, 12120 Pathum Thani, Thailand
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California, CA 90095, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
5
|
Do TM, Capdevila C, Pradier L, Blanchard V, Lopez-Grancha M, Schussler N, Steinmetz A, Beninga J, Boulay D, Dugay P, Verdier P, Aubin N, Dargazanli G, Chaves C, Genet E, Lossouarn Y, Loux C, Michoux F, Moindrot N, Chanut F, Gury T, Eyquem S, Valente D, Bergis O, Rao E, Lesuisse D. Tetravalent Bispecific Tandem Antibodies Improve Brain Exposure and Efficacy in an Amyloid Transgenic Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:58-77. [PMID: 33005703 PMCID: PMC7502788 DOI: 10.1016/j.omtm.2020.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022]
Abstract
Most antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aβ) peptide were constructed and shown to display higher brain penetration than the parent anti-Aβ antibody. Additional structure-based mutations on the TfR paratopes further increased brain exposure, with maximal enhancement up to 13-fold in wild-type mice and an additional 4–5-fold in transgenic (Tg) mice harboring amyloid plaques, the main target of our amyloid antibody. Parenchymal target engagement of extracellular amyloid plaques was demonstrated using in vivo and ex vivo fluorescence imaging as well as histological methods. The best candidates were selected for a chronic study in an amyloid precursor protein (APP) Tg mouse model showing efficacy at reducing brain amyloid load at a lower dose than the corresponding monospecific antibody. TBTIs represent a promising format for enhancing IgG brain penetration using a symmetrical construct and keeping bivalency of the payload antibody.
Collapse
Affiliation(s)
- Tuan-Minh Do
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | | | - Laurent Pradier
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | | | | | | | - Anke Steinmetz
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | | | - Denis Boulay
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | - Philippe Dugay
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Patrick Verdier
- Translational Medicine and Early Development, Sanofi, Alfortville, France
| | - Nadine Aubin
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | | | - Catarina Chaves
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Elisabeth Genet
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Yves Lossouarn
- Drug Metabolism and Pharmacokinetics, Sanofi, Alfortville, France
| | | | | | - Nicolas Moindrot
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Franck Chanut
- Pathology Department, Sanofi, Vitry-Sur-Seine, France
| | - Thierry Gury
- Pathology Department, Sanofi, Vitry-Sur-Seine, France
| | - Stéphanie Eyquem
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Delphine Valente
- Drug Metabolism and Pharmacokinetics, Sanofi, Alfortville, France
| | - Olivier Bergis
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | - Ercole Rao
- Biologics Research, Sanofi, Frankfurt, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
- Corresponding author:
| |
Collapse
|
6
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Deng H, Konopka CJ, Cross TWL, Swanson KS, Dobrucki LW, Smith AM. Multimodal Nanocarrier Probes Reveal Superior Biodistribution Quantification by Isotopic Analysis over Fluorescence. ACS NANO 2020; 14:509-523. [PMID: 31887006 PMCID: PMC7377915 DOI: 10.1021/acsnano.9b06504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Absolute measurements of biodistribution are essential for understanding and optimizing the function of nanomaterials for in vivo diagnostic and therapeutic applications. Biodistribution analysis by optical imaging is desirable due to its low cost, wide accessibility, and high-throughput nature, but it is substantially less accurate than isotopic and chemical techniques. In this work, we developed multimodal probes for optical and nuclear imaging to analyze the quantitative limits of optical contrast in the red and near-infrared spectra for polysaccharide nanocarriers targeting macrophage cells. Probes incorporating three zwitterionic fluorophores together with radioactive copper distributed diffusely to optically dissimilar tissues that were either white (visceral adipose tissue) or dark red (liver and spleen) in obese rodents. We used in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo hyperspectral tomographic fluorescence imaging, and ex vivo optical and isotopic analyses to determine correlations between optical and nuclear signals. PET imaging strongly correlated with standardized ex vivo methods for all tissue types, whereas no fluorescence signals exhibited substantial accuracy in quantification or localization in vivo. Optical imaging of resected tissues was most accurate in the 700 nm wavelength window, but only in white tissues. This work suggests that fluorescence can be used to measure diffuse probe distribution in white tissues over time or across animals, but not red tissues and not deep in the body. This work also highlights the importance of choosing validated experimental protocols and describes how optical measurements are impacted by fluorophore class and spectral properties, tissue properties, and imaging workflow.
Collapse
Affiliation(s)
- Hongping Deng
- Department of Bioengineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Christian J. Konopka
- Department of Bioengineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Tzu-Wen L. Cross
- Division of Nutritional Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department of Animal Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Kelly S. Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department of Animal Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Lawrence W. Dobrucki
- Department of Bioengineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Zheng H, Wang J, Li B, Guo L, Li H, Song J, Yang Z, Li H, Fan H, Huang X, Long H, Cheng C, Chu M, He Z, Yu W, Li J, Gao Y, Ning R, Li N, Yang J, Wu Q, Shi H, Sun M, Liu L. A Novel Neutralizing Antibody Specific to the DE Loop of VP1 Can Inhibit EV-D68 Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:2557-2569. [PMID: 30282753 DOI: 10.4049/jimmunol.1800655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022]
Abstract
Enterovirus D68 (EV-D68) belongs to the picornavirus family and was first isolated in CA, USA, in 1962. EV-D68 can cause severe cranial nerve system damage such as flaccid paralysis and acute respiratory diseases such as pneumonia. There are currently no efficient therapeutic methods or effective prophylactics. In this study, we isolated the mAb A6-1 from an EV-D68-infected rhesus macaque (Macaca mulatta) and found that the Ab provided effective protection in EV-D68 intranasally infected suckling mice. We observed that A6-1 bound to the DE loop of EV-D68 VP1 and interfered with the interaction between the EV-D68 virus and α2,6-linked sialic acids of the host cell. The production of A6-1 and its Ab properties present a bridging study for EV-D68 vaccine design and provide a tool for analyzing the process by which Abs can inhibit EV-D68 infection.
Collapse
Affiliation(s)
- Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Bingxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Hongzhe Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haitao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Xing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haiting Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Chen Cheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Manman Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jiaqi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - You Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Qiongwen Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| |
Collapse
|
9
|
Gupta P, Wentland JA, Leal M, Ma D, Roach R, Esparza A, King L, Spilker ME, Bagi C, Winkelmann CT, Giddabasappa A. Assessment of near-infrared fluorophores to study the biodistribution and tumor targeting of an IL13 receptor α2 antibody by fluorescence molecular tomography. Oncotarget 2017; 8:57231-57245. [PMID: 28915667 PMCID: PMC5593638 DOI: 10.18632/oncotarget.19569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/03/2017] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging using radiolabels is a common technique used to study the biodistribution of biologics. Due to the limited shelf-life of radiolabels and the requirements of specialized labs, non-invasive optical imaging is an attractive alternative for preclinical studies. Previously, we demonstrated the utility of fluorescence molecular tomography (FMT) an optical imaging modality in evaluating the biodistribution of antibody-drug conjugates. As FMT is a relatively new technology, few fluorophores have been validated for in vivo imaging. The goal of this study was to characterize and determine the utility of near-infrared (NIR) fluorophores for biodistribution studies using interleukin-13 receptor subunit alpha-2 antibody (IL13Rα2-Ab). Eight fluorophores (ex/em: 630/800 nm) with an N-hydroxysuccinimide (NHS) linker were evaluated for Ab conjugation. The resulting antibody-fluorophore (Ab-F) conjugates were evaluated in vitro for degree of conjugation, stability and target-binding, followed by in vivo/ex vivo FMT imaging to determine biodistribution in a xenograft model. The Ab-F conjugates (except Ab-DyLight800) showed good in vitro stability and antigen binding. All Ab-F conjugates (except for Ab-BOD630) resulted in a quantifiable signal in vivo and had similar biodistribution profiles, with peak tumor accumulation between 6 and 24 h post-injection. In vivo/ex vivo FMT imaging showed 17–34% ID/g Ab uptake by the tumor at 96 h. Overall, this is the first study to characterize the biodistribution of an Ab using eight NIR fluorophores. Our results show that 3-dimensional optical imaging is a valuable technology to understand biodistribution and targeting, but a careful selection of the fluorophore for each Ab is warranted.
Collapse
Affiliation(s)
- Parul Gupta
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| | - Jo-Ann Wentland
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Mauricio Leal
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Dangshe Ma
- Oncology Research Unit, Pfizer, Inc., Pearl River, NY, USA.,Current affiliation: Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Rachel Roach
- Center for Therapeutic Innovation, Pfizer, Inc., La Jolla, CA, USA
| | | | - Lindsay King
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Mary E Spilker
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Cedo Bagi
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| | | | - Anand Giddabasappa
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| |
Collapse
|
10
|
Kawanishi T. Regulatory science for innovative drug development. Nihon Yakurigaku Zasshi 2016; 148:272-277. [PMID: 27803441 DOI: 10.1254/fpj.148.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs 2016; 9:140-153. [PMID: 27661454 DOI: 10.1080/19420862.2016.1238996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Dobosz
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Ute Haupt
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Werner Scheuer
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| |
Collapse
|