1
|
Rogers JE, Yamashita K, Sewastjanow-Silva M, Rosa Vicentini E, Waters R, Ajani JA. Nivolumab combination therapy as first-line treatments for unresectable, advanced or metastatic esophageal squamous cell carcinoma. Expert Rev Anticancer Ther 2023; 23:565-571. [PMID: 37122102 DOI: 10.1080/14737140.2023.2207826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Esophageal cancers continue to confer a dismal prognosis. Targeted and immune therapies have skyrocketed in the world of cancer management. Unlike other solid tumors, esophageal squamous cell carcinoma (ESCC) has lacked effective targeted therapy. Promising outcomes with immune checkpoint inhibitors (ICIs) have recently changed ESCC management. AREAS COVERED Nivolumab has been granted several approvals to treat ESCC patients. Nivolumab is recommended as adjuvant therapy for localized ESCC patients following trimodality therapy who have residual cancer in the surgical specimen (lymph node(s) and or the primary). CheckMate-648 led to dual ICI therapy approval with nivolumab plus ipilimumab or nivolumab plus platinum with fluoropyrimidine as first line treatment for unresectable ESCC patients. ATTRACTION-3 resulted in nivolumab approval for second line therapy of unresectable ESCC patients who have not been exposed to ICI. Here we provide a review of nivolumab and how this relates to ESCC management. EXPERT OPINION Some ESCC patients will not experience a response to ICIs. Determining intrinsic and acquired resistance patterns are needed to further capitalize on ICI therapy for ESCC patients. PD-L1 expression has been explored as a potential biomarker. Data shows, however, PD-L1 positive tumor patients benefit but this assessment is not always needed.
Collapse
Affiliation(s)
- Jane E Rogers
- Departments of Pharmacy Clinical Programs, University of Texas MD Anderson Cancer Center, Texas, USA
| | - Kohei Yamashita
- Gastrointestinal Medical Oncology1, University of Texas MD Anderson Cancer Center, Texas, USA
| | | | - Ernesto Rosa Vicentini
- Gastrointestinal Medical Oncology1, University of Texas MD Anderson Cancer Center, Texas, USA
| | - Rebecca Waters
- Department of Pathology, University of Texas MD Anderson Cancer Center, Texas, USA
| | - Jaffer A Ajani
- Gastrointestinal Medical Oncology1, University of Texas MD Anderson Cancer Center, Texas, USA
| |
Collapse
|
2
|
Mass spectrometry-based multi-attribute method for mutation analysis in the early development of therapeutic proteins. J Pharm Biomed Anal 2022; 220:115018. [PMID: 36030755 DOI: 10.1016/j.jpba.2022.115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
The early intervention is essential, and later development cannot compensate for this initial generation of an antibody drug. Especially for sequence variants (SVs), should cause concern during the early bioprocess development. The advancement of bioprocess development is paralleled by development of state-of-the-art analytical methods that will provide further information. In the present study, a mass spectrometry (MS)-based multi-attribute method (MAM) was used to simultaneously monitor the SVs and other quality attributes in the early bioprocess development of ofatumumab, and a sequence variant (SV) was detected by a subunit-based MAM. Subsequently, the variant was further identified by MS/MS and confirmed by adding a synthetic peptide. Furthermore, the content of the SV was detected via DNA sequencing. The levels of the variant (T175A mutant) in the light chain were demonstrate to be nearly consistent at the DNA and protein levels, suggesting that the mutation may have negligible effect on both the transcriptional and translational levels. Collectively, these results indicate that broad-spectrum, rapid, and accurate platform such as MS-based MAM should be implemented to quality control for the early development of therapeutic proteins, it will also be important to establish an effective and integrated MAM to control SVs during therapeutic proteins development.
Collapse
|
3
|
Identification, characterization and control of a sequence variant in monoclonal antibody drug product: a case study. Sci Rep 2021; 11:13233. [PMID: 34168178 PMCID: PMC8225904 DOI: 10.1038/s41598-021-92338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence modifications, that can result in altered physicochemical and or biological properties, is therefore desirable in product manufacturing. Because of their low abundance, and finite resolving power of conventional analytical techniques, they are often overlooked in early drug development. Here, we present a case study where trace amount of a sequence variant is identified in a monoclonal antibody (mAb) based therapeutic protein by LC-MS/MS and the structural and functional features of the SV containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent and inconspicuous nature of the variant in process chromatography. We present the extensive characterization of a sequence variant in protein biopharmaceutical and first report on control of sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method during the purification steps.
Collapse
|
4
|
Wang H, Wu L, Wang C, Xu J, Yin H, Guo H, Zheng L, Shao H, Chen G. Biosimilar or Not: Physicochemical and Biological Characterization of MabThera and Its Two Biosimilar Candidates. ACS Pharmacol Transl Sci 2021; 4:790-801. [PMID: 33860202 DOI: 10.1021/acsptsci.0c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/28/2022]
Abstract
The development of therapeutic biosimilar antibodies has become an important driving force of the modern biopharmaceutical industry. In this study, physiochemical characteristics (amino acid sequence, intact/subunit molecular weight, isoelectric point, post-translation modification, and disulfide linkage pattern), purity (charge variants, high and low molecular weight variants), antigen binding activity, Fc receptor binding affinity and Fc-effector function (CDC and ADCC) were analyzed by using an extensive set of state-of-the-art and orthogonal analytical technologies to provide a comprehensive characterization of the innovative product rituximab and two biosimilar candidates. The similarity study showed that biosimilar candidate 1 (BC1) and the reference product (RP) MabThera had an identical protein amino acid sequences and highly similar primary structures along with similar purity, heterogeneity profiles, antigen binding activity, Fc receptor binding affinity, and Fc-effector functions. Biosimilar candidate 2 (BC2), which had an amino acid replacement at a constant region, a different N-glycosylation profiling, and purity, was not analytically similar to RP. Although BC2 showed improvement such as an increased level of afucose, another IgG1 allotype, and similar biological activities, it was not recommended to be applied as a biosimilar compound in drug registration because the biosimilar manufacturer must first show that its primary structure was identical to that of RP. Our physicochemical characterizations and bioassay comparability study provided a deepened understanding of the structure-function relationship of quality attributes.
Collapse
Affiliation(s)
- Hong Wang
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Linping Wu
- Shanghai Frontier Health Medicine Technology Co., Ltd., Shanghai 201203, China
| | - Can Wang
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Hongrui Yin
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Luxia Zheng
- State Key Laboratory of Antibody Medicine and Targeted Therapy, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Hong Shao
- State Key Laboratory of Antibody Medicine and Targeted Therapy, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Gang Chen
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| |
Collapse
|
5
|
Khanal O, Kumar V, Lenhoff AM. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 2020; 118:164-174. [PMID: 32910459 DOI: 10.1002/bit.27559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Harris C, Xu W, Grassi L, Wang C, Markle A, Hardman C, Stevens R, Miro-Quesada G, Hatton D, Wang J. Identification and characterization of an IgG sequence variant with an 11 kDa heavy chain C-terminal extension using a combination of mass spectrometry and high-throughput sequencing analysis. MAbs 2019; 11:1452-1463. [PMID: 31570042 PMCID: PMC6816433 DOI: 10.1080/19420862.2019.1667740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein primary structure is a potential critical quality attribute for biotherapeutics. Identifying and characterizing any sequence variants present is essential for product development. A sequence variant ~11 kDa larger than the expected IgG mass was observed by size-exclusion chromatography and two-dimensional liquid chromatography coupled with online mass spectrometry. Further characterization indicated that the 11 kDa was added to the heavy chain (HC) Fc domain. Despite the relatively large mass addition, only one unknown peptide was detected by peptide mapping. To decipher the sequence, the transcriptome of the manufacturing cell line was characterized by Illumina RNA-seq. Transcriptome reconstruction detected an aberrant fusion transcript, where the light chain (LC) constant domain sequence was fused to the 3ʹ end of the HC transcript. Translation of this fusion transcript generated an extended peptide sequence at the HC C-terminus corresponding to the observed 11 kDa mass addition. Nanopore-based genome sequencing showed multiple copies of the plasmid had integrated in tandem with one copy missing the 5ʹ end of the plasmid, deleting the LC variable domain. The fusion transcript was due to read-through of the HC terminator sequence into the adjacent partial LC gene and an unexpected splicing event between a cryptic splice-donor site at the 3ʹ end of the HC and the splice acceptor site at the 5ʹ end of the LC constant domain. Our study demonstrates that combining protein physicochemical characterization with genomic and transcriptomic analysis of the manufacturing cell line greatly improves the identification of sequence variants and understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Weichen Xu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Chunlei Wang
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Abigail Markle
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Colin Hardman
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Richard Stevens
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Guillermo Miro-Quesada
- Data & Quantitative Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Jihong Wang
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| |
Collapse
|
7
|
Comparative Glycopeptide Analysis for Protein Glycosylation by Liquid Chromatography and Tandem Mass Spectrometry: Variation in Glycosylation Patterns of Site-Directed Mutagenized Glycoprotein. Int J Anal Chem 2018; 2018:8605021. [PMID: 30245723 PMCID: PMC6139207 DOI: 10.1155/2018/8605021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
Glycosylation is one of the most important posttranslational modifications for proteins, including therapeutic antibodies, and greatly influences protein physiochemical properties. In this study, glycopeptide mapping of a reference and biosimilar recombinant antibodies (rAbs) was performed using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and an automated Glycoproteome Analyzer (GPA) algorithm. The tandem mass analyses for the reference and biosimilar samples indicate that this approach proves to be highly efficient in reproducing consistent analytical results and discovering the implications of different rAb production methods on glycosylation patterns. Furthermore, the comparative analysis of a mutagenized rAb glycoprotein proved that a single amino acid mutation in the Fc portion of the antibody molecule caused increased variations in glycosylation patterns. These variations were also detected by the mass spectrometry method efficiently. This mapping method, focusing on precise glycopeptide identification and comparison for the identified glycoforms, can be useful in differentiating aberrant glycosylation in biosimilar rAb products.
Collapse
|
8
|
Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem 2018; 410:2111-2126. [PMID: 29411091 PMCID: PMC5830484 DOI: 10.1007/s00216-018-0848-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022]
Abstract
Peptide mapping is a component of the analytical toolbox used within the biopharmaceutical industry to aid in the identity confirmation of a protein therapeutic and to monitor degradative events such as oxidation or deamidation. These methods offer the advantage of providing site-specific information regarding post-translational and chemical modifications that may arise during production, processing or storage. A number of such variations may also be induced by the sample preparation methods themselves which may confound the ability to accurately evaluate the true modification levels. One important focus when developing a peptide mapping method should therefore be the use of sample preparation conditions that will minimize the degree of artificial modifications induced. Unfortunately, the conditions that are amenable to effective reduction, alkylation and digestion are often the same conditions that promote unwanted modifications. Here we describe the optimization of a tryptic digestion protocol used for peptide mapping of the NISTmAb IgG1κ which addresses the challenge of balancing maximum digestion efficiency with minimum artificial modifications. The parameters on which we focused include buffer concentration, digestion time and temperature, as well as the source and type of trypsin (recombinant vs. pancreatic; bovine vs porcine) used. Using the optimized protocol we generated a peptide map of the NISTmAb which allowed us to confirm its identity at the level of primary structure. Graphical abstract Peptide map of the NISTmAb RM 8671 monoclonal antibody. Tryptic digestion was performed using an optimized protocol and followed by LC-UV-MS analysis. The trace represents the total ion chromatogram. Each peak was mapped to peptides identified using mass spectrometry data.
Collapse
Affiliation(s)
- Trina Mouchahoir
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - John E Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| |
Collapse
|
9
|
Griaud F, Winter A, Denefeld B, Lang M, Hensinger H, Straube F, Sackewitz M, Berg M. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry. MAbs 2017; 9:1337-1348. [PMID: 28846476 PMCID: PMC5680803 DOI: 10.1080/19420862.2017.1366395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6–9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.
Collapse
Affiliation(s)
- François Griaud
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Andrej Winter
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Blandine Denefeld
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Manuel Lang
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Héloïse Hensinger
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Frank Straube
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Mirko Sackewitz
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Matthias Berg
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| |
Collapse
|
10
|
Regl C, Wohlschlager T, Holzmann J, Huber CG. A Generic HPLC Method for Absolute Quantification of Oxidation in Monoclonal Antibodies and Fc-Fusion Proteins Using UV and MS Detection. Anal Chem 2017; 89:8391-8398. [DOI: 10.1021/acs.analchem.7b01755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christof Regl
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Therese Wohlschlager
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Johann Holzmann
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
- Technical
Development
Biosimilars, Physicochemical Characterization Kundl, Novartis BTDM,
Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
| | - Christian G. Huber
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab. BioDrugs 2016; 30:321-38. [PMID: 27461107 PMCID: PMC4972872 DOI: 10.1007/s40259-016-0184-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. OBJECTIVE The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. METHODS Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. RESULTS ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. CONCLUSION Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Collapse
Affiliation(s)
- Jennifer Liu
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Tamer Eris
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Cynthia Li
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Shawn Cao
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Scott Kuhns
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|