1
|
Xia F, Liu Z, Hang J, Xu H, Xiao Y, Niu S, Qin J, Lou S, Liu B, Tang F, Huang W, Yang Y, Shi W. Harnessing acylhydrazone-oxime exchange reaction to achieve diverse synthesis of glycosite-specific antibody-drug conjugates. Org Biomol Chem 2025; 23:1448-1456. [PMID: 39757732 DOI: 10.1039/d4ob01826e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Glycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved N-glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads via aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability. Herein, we report an efficient approach to assemble aldehyde-based gsADCs, in which the aldehyde group is first protected by hydrazine and conjugates linker-payloads via an acylhydrazone-oxime exchange reaction. This method exhibits remarkable coupling efficiency to various linker-payloads, and the corresponding gsADCs demonstrate good homogeneity, stability, and in vitro and in vivo efficacy.
Collapse
Affiliation(s)
- Fei Xia
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Lingang Laboratory, Shanghai, 200031, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiaying Hang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hao Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing 210023, China
| | - Yuting Xiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuyue Niu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Songyue Lou
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Feng Tang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shanghai GlycanLink Biotech. Co. Ltd, Zhangjiang, Shanghai 201210, China
| | - Yang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Shi
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Yang Q, Liu Y. Technical, preclinical, and clinical developments of Fc-glycan-specific antibody-drug conjugates. RSC Med Chem 2025; 16:50-62. [PMID: 39568595 PMCID: PMC11575643 DOI: 10.1039/d4md00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a powerful avenue in the therapeutic treatment of cancer. Site-specific antibody-drug conjugations represent the latest trend in the development of ADCs, addressing the limitations of traditional random conjugation technologies. This article summarizes the innovative development of Fc-glycan-specific ADCs (gsADCs), which utilize the conserved Fc N-glycan as the anchor point for site-specific conjugation. This approach offers significant strengths, including improved ADC homogeneity and overall hydrophilicity, enhanced pharmacokinetics and therapeutic index, and potentially reduced Fc receptor-mediated side effects. Currently dozens of gsADCs are in different preclinical and clinical development stages. Notably, JSKN003 and IBI343 have demonstrated promising results in phase 1 trials and are advancing into phase 3 studies. This review discusses the advantages of Fc-glycan-conjugation, various glycan-specific conjugation techniques, and the preclinical and clinical development of gsADCs. While challenges such as increased manufacturing cost for large-scale production need continuous innovation to overcome and there are different opinions regarding the pros and cons of reduced/diminished affinities to Fc gamma receptors, ongoing research and clinical progress underscore the potential of gsADCs to renovate ADC cancer therapy.
Collapse
Affiliation(s)
- Qiang Yang
- Brilliant BioConsultation Ellicott City MD 21043 USA
| | | |
Collapse
|
3
|
Gulyak EL, Komarova OA, Prokopenko YA, Faizullina EA, Malabuiok DM, Ibragimova AR, Mokrushina YA, Serova OV, Popova GP, Zhitlov MY, Nikitin TD, Brylev VA, Ustinov AV, Alferova VA, Korshun VA, Smirnov IV, Terekhov SS, Sapozhnikova KA. Branched Linkers for Homogeneous Antibody-Drug Conjugates: How Long Is Long Enough? Int J Mol Sci 2024; 25:13356. [PMID: 39769122 PMCID: PMC11678271 DOI: 10.3390/ijms252413356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Homogeneous antibody-drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed. As a result, two modifications can be introduced per IgG molecule; however, achieving higher drug-to-antibody ratios (DARs) requires the use of branched linkers. While several such linkers have been reported, little information is available on the relationship between linker structure and ADC properties. To address this gap, we synthesized two branched amino triazide linkers, differing by a PEG4 fragment inserted after the branching point, which were used to prepare two homogeneous trastuzumab-based DAR 6 ADCs (a "short" and a "long" one). This was achieved by a two-step process consisting of enzymatic linker conjugation followed by bioorthogonal coupling with a cleavable linker bearing monomethyl auristatin E (MMAE). Two other trastuzumab-MMAE conjugates were used as controls: a heterogeneous DAR 6 ADC, made using conventional thiol-maleimide chemistry, and a homogeneous DAR 2 ADC. We found that, while the four conjugates had identical affinity for HER2, their cytotoxicity differed significantly: the "long" homogeneous DAR 6 ADC was just as active as its heterogeneous counterpart, but the "short" DAR 6 ADC was an order of magnitude less potent, inferior even to the DAR 2 conjugate. Our findings indicate that the length of the branched linker critically affects the cytotoxic activity of ADCs, possibly due to steric hindrance influencing the rate of linker cleavage by lysosomal enzymes.
Collapse
Affiliation(s)
- Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Olga A. Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Yury A. Prokopenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Elina A. Faizullina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Diana M. Malabuiok
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Aigul R. Ibragimova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Yuliana A. Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Oxana V. Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Galina P. Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| |
Collapse
|
4
|
Frohnmeyer H, Kodra N, Elling L. Advanced enzymatic multigram-scale production of nucleotide sugars in a continuous fed-batch membrane reactor. J Biotechnol 2024; 395:1-11. [PMID: 39241966 DOI: 10.1016/j.jbiotec.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Enzymatic production of nucleotide sugars on a multigram scale presents a challenge, as only a few processes have been reported for large-scale nucleotide sugar production. They rely primarily on batch synthesis and employ exceptional amounts of enzymes. This study introduces a novel approach for the multigram-scale production of nucleotide sugars with a continuous fed-batch membrane reactor. We successfully synthesized five main nucleotide sugars: UDP-Gal, UDP-GalNAc, UDP-GlcA, GDP-Man, and CMP-Neu5Ac on a multigram scale. Efficient biocatalyst utilization results in high performance, including space-time yield (STY, g*L-1h-1), total turnover number (TTN, g product per g enzyme), and an efficient product formation rate (g/h) suitable for industrially relevant bioprocesses. The established continuous-fed batch reactor system produced up to 8.2 g CMP-Neu5Ac in three consecutive productions in less than 15 h with satisfying TTNs of 91 gProduct/gEnzyme. Continuous production of UDP-GlcA over 28 h resulted in a final product amount of 14.8 g and TTN of 493 gP/gE. This process enables the production of nucleotide sugars with stable product formation, requiring minimal technical equipment for multigram quantities of nucleotide sugars at the laboratory scale. Notably, the system exhibited robustness and flexibility, allowing its application to various enzymatic nucleotide sugar synthesis cascades.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany.
| |
Collapse
|
5
|
Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med 2024; 9:e10677. [PMID: 39545074 PMCID: PMC11558205 DOI: 10.1002/btm2.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
6
|
Frohnmeyer H, Verkade JMM, Spiertz M, Rentsch A, Hoffmann N, Sobota M, Schwede F, Tjeerdsma P, Elling L. Process Development for the Enzymatic Gram-Scale Production of the Unnatural Nucleotide Sugar UDP-6-Azido-GalNAc. CHEMSUSCHEM 2024; 17:e202400311. [PMID: 38655621 DOI: 10.1002/cssc.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Azido sugars hold great promise as substrates in numerous click-chemistry applications. However, the synthesis of activated azido sugars is limited by cost and complexity. Conventional chemical activation methods are intricate and time-consuming. In response, we have developed a process for the large-scale production of UDP-6-azido-GalNAc through enzymatic nucleotide sugar synthesis on a gram scale. Our optimization strategies encompassed refining the process parameters of an enzyme cascade featuring NahK from Bifidobacterium longum and AGX1 from Homo sapiens. Using the repetitive-batch-mode technology, we synthesized up to 2.1 g of UDP-6-azido-GalNAc, achieving yields up to 97 % in five consecutive batch cycles using a single enzyme batch. The synthesis process demonstrated to have total turnover numbers (TTNs) between 4.4-4.8 g of product per gram of enzyme (gP/gE) and STYs ranging from 1.7-2.4 g per liter per hour (g*L-1*h-1). By purification of a product solution pool containing 2.6 g (4.1 mmol) UDP-6-azido-GalNAc, 2.1 g (2,122.1 mg) UDP-6-azido-GalNAc (sodium salt) with a purity of 99.96 % (HPLC) were obtained. The overall recovery after purification was 81 % (3.32 mmol). Our work establishes a robust production platform for the gram-scale synthesis of unnatural nucleotide sugars, opening new avenues for applications in glycan engineering.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Jorge M M Verkade
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Markus Spiertz
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Andreas Rentsch
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Niels Hoffmann
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Milan Sobota
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Peter Tjeerdsma
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Lothar Elling
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
7
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Linssen MDE, Lin YT, van den Wildenberg SAH, Tholen MME, de Jong AM, Prins MWJ. Oriented Antibody Coupling to an Antifouling Polymer Using Glycan Remodeling for Biosensing by Particle Motion. Bioconjug Chem 2024; 35:996-1006. [PMID: 38946349 PMCID: PMC11261616 DOI: 10.1021/acs.bioconjchem.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Biosensors based on immobilized antibodies require molecular strategies that (i) couple the antibodies in a stable fashion while maintaining the conformation and functionality, (ii) give outward orientation of the paratope regions of the antibodies for good accessibility to analyte molecules in the biofluid, and (iii) surround the antibodies by antibiofouling molecules. Here, we demonstrate a method to achieve oriented coupling of antibodies to an antifouling poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) substrate, using glycan remodeling to create antibody-DNA conjugates. The coupling, orientation, and functionality of the antibodies were studied using two analysis methods with single-molecule resolution, namely single-molecule localization microscopy and continuous biosensing by particle motion. The biosensing functionality of the glycan-remodeled antibodies was demonstrated in a sandwich immunosensor for procalcitonin. The results show that glycan-remodeled antibodies enable oriented immobilization and biosensing functionality with low nonspecific binding on antifouling polymer substrates.
Collapse
Affiliation(s)
- Maud D.
M. E. Linssen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Yu-Ting Lin
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612AR, The Netherlands
| | - Sebastian A. H. van den Wildenberg
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Marrit M. E. Tholen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Arthur M. de Jong
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612AR, The Netherlands
| |
Collapse
|
9
|
Xu H, Wang L, Xu D. Global publication productivity and research trends on recurrent ovarian cancer: a bibliometric study. Front Oncol 2024; 14:1422213. [PMID: 39035742 PMCID: PMC11257877 DOI: 10.3389/fonc.2024.1422213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Recurrent ovarian cancer (ROC) presents a dismal prognosis, persistently devoid of efficacious therapeutic strategies. Over the past decade, significant shifts have transpired in ROC management, marked by the identification of novel therapeutic targets and advancements in biomarker research and innovation. Since bibliometrics is an effective method for revealing scientific literature, we conducted a bibliometric analysis of literature pertaining to ROC. Our exploration encompassed identifying emerging research trends and common patterns, analyzing collaborative networks, and anticipating future directions within this clinical context. Methods We conducted a search in the Web of Science Core Collection (WoSCC) to acquire relevant articles as our dataset, which were then exported using R-Studio-2023.12.0-369 software. The Bibliometrix R package was utilized to perform visual analyses on countries, institutions, journals, authors, landmark articles, and keywords within this research field. Results A total of 1538 articles and 173 reviews published between 2014 and 2023 were eventually retrieved. The annual growth rate of scientific production was 4.27%. The USA led the way in the number of published works, total citations, and collaboration. Gynecologic Oncology was the most favoured journal in this research field. Vergote I from the University Hospital Leuven, was the most influential author. At last, the most prominent keywords were "chemotherapy" (n = 124), "bevacizumab" (n = 87), and "survival" (n = 65). Clinical outcomes (prognosis, survival), chemotherapy, bevacizumab, and PARP inhibitors (olaparib, niraparib) represented the basic and transversal themes, while antibody-drug conjugate (ADC) and drug resistance were emerging themes. Cytoreduction surgical procedures and tamoxifen were niche themes, while immunotherapy and biomarkers were motor themes and had high centrality. Conclusion The trends in the ROC research field over the past decade were revealed through bibliometric analysis. Platinum resistance, ADC, and immunotherapy have emerged as the current prominent research topics.
Collapse
Affiliation(s)
| | | | - Dianbo Xu
- Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Journeaux T, Bernardes GJL. Homogeneous multi-payload antibody-drug conjugates. Nat Chem 2024; 16:854-870. [PMID: 38760431 DOI: 10.1038/s41557-024-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 05/19/2024]
Abstract
Many systemic cancer chemotherapies comprise a combination of drugs, yet all clinically used antibody-drug conjugates (ADCs) contain a single-drug payload. These combination regimens improve treatment outcomes by producing synergistic anticancer effects and slowing the development of drug-resistant cell populations. In an attempt to replicate these regimens and improve the efficacy of targeted therapy, the field of ADCs has moved towards developing techniques that allow for multiple unique payloads to be attached to a single antibody molecule with high homogeneity. However, the methods for generating such constructs-homogeneous multi-payload ADCs-are both numerous and complex owing to the plethora of reactive functional groups that make up the surface of an antibody. Here, by summarizing and comparing the methods of both single- and multi-payload ADC generation and their key preclinical and clinical results, we provide a timely overview of this relatively new area of research. The methods discussed range from branched linker installation to the incorporation of unnatural amino acids, with a generalized comparison tool of the most promising modification strategies also provided. Finally, the successes and challenges of this rapidly growing field are critically evaluated, and from this, future areas of research and development are proposed.
Collapse
Affiliation(s)
- Toby Journeaux
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
11
|
Metrangolo V, Engelholm LH. Antibody-Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs. Cancers (Basel) 2024; 16:447. [PMID: 38275888 PMCID: PMC10814585 DOI: 10.3390/cancers16020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Introduced almost two decades ago, ADCs have marked a breakthrough in the targeted therapy era, providing clinical benefits to many cancer patients. While the inherent complexity of this class of drugs has challenged their development and broad application, the experience gained from years of trials and errors and recent advances in construct design and delivery have led to an increased number of ADCs approved or in late clinical development in only five years. Target and payload diversification, along with novel conjugation and linker technologies, are at the forefront of next-generation ADC development, renewing hopes to broaden the scope of these targeted drugs to difficult-to-treat cancers and beyond. This review highlights recent trends in the ADC field, focusing on construct design and mechanism of action and their implications on ADCs' therapeutic profile. The evolution from conventional to innovative ADC formats will be illustrated, along with some of the current hurdles, including toxicity and drug resistance. Future directions to improve the design of next-generation ADCs will also be presented.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark;
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark;
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Mukai K, Cost R, Zhang XS, Condiff E, Cotton J, Liu X, Boudanova E, Niebel B, Piepenhagen P, Cai X, Park A, Zhou Q. Targeted protein degradation through site-specific antibody conjugation with mannose 6-phosphate glycan. MAbs 2024; 16:2415333. [PMID: 39434219 PMCID: PMC11497922 DOI: 10.1080/19420862.2024.2415333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent developments in targeted protein degradation have provided great opportunities to eliminating extracellular protein targets using potential therapies with unique mechanisms of action and pharmacology. Among them, Lysosome-Targeting Chimeras (LYTACs) acting through mannose 6-phosphate receptor (M6PR) have been shown to facilitate degradation of several soluble and membrane-associated proteins in lysosomes with high efficiency. Herein we have developed a novel site-specific antibody conjugation approach to generate antibody mannose 6-phosphate (M6P) conjugates. The method uses a high affinity synthetic M6P glycan, bisM6P, that is coupled to an Fc-engineered antibody NNAS. This mutant without any effector function was generated by switching the native glycosylation site from position 297 to 298 converting non-sialylated structures to highly sialylated N-glycans. The sialic acid of the glycans attached to Asn298 in the engineered antibody was selectively conjugated to bisM6P without chemoenzymatic modification, which is often used for site-specific antibody conjugation through glycans. The conjugate is mainly homogeneous by analysis using mass spectrometry, typically with one or two glycans coupled. The M6P-conjugated antibody against a protein of interest (POI) efficiently internalized targeted soluble proteins, such as human tumor necrosis factor (TNF), in both cancer cell lines and human immune cells, through the endo-lysosomal pathway as demonstrated by confocal microscopy and flow cytometry. TNF in cell culture media was significantly depleted after the cells were incubated with the M6P-conjugated antibody. TNF internalization is mediated through M6PR, and it is correlated well with cell surface expression of cation-independent M6PR (CI-MPR) in immune cells. A significant amount of CI-MPR remains on the cell surface, while internalized TNF is degraded in lysosomes. Thus, the antibody-M6P conjugate is highly efficient in inducing internalization and subsequent lysosome-mediated protein degradation. Our platform provides a unique method for producing biologics-based degraders that may be used to treat diseases through event-driven pharmacology, thereby addressing unmet medical needs.
Collapse
Affiliation(s)
- Kaori Mukai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Robert Cost
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Xin Sheen Zhang
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | - Emily Condiff
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | | | - Xiaohua Liu
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | | | - Björn Niebel
- Large Molecules Research, Sanofi R&D Ghent, Ghent, Belgium
| | | | - Xinming Cai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Anna Park
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Qun Zhou
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| |
Collapse
|
13
|
Yang Q, Chen H, Ou C, Zheng Z, Zhang X, Liu Y, Zong G, Wang LX. Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody-Drug Conjugates. Antibodies (Basel) 2023; 12:71. [PMID: 37987249 PMCID: PMC10660516 DOI: 10.3390/antib12040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Fc-glycosite-specific antibody-drug conjugation represents a promising direction for the preparation of site-specific antibody-drug conjugates (ADCs). In the present research, we conducted a systemic evaluation of two endoglycosidase-catalyzed chemoenzymatic glycoengineering technologies to prepare glycosite-specific ADCs. In the first two-step approach, the antibody was deglycosylated and then reglycosylated with a modified intact N-glycan oxazoline. In the second one-pot approach, antibodies were deglycosylated and simultaneously glycosylated with a functionalized disaccharide oxazoline. For the comprehensive evaluation, we first optimized and scaled-up the preparation of azido glycan oxazolines. Afterwards, we proved that the one-pot glycan-remodeling approach was efficient for all IgG subclasses. Subsequently, we assembled respective ADCS using two technology routes, with two different linker-payloads combinations, and performed systemic in vitro and in vivo evaluations. All the prepared ADCs achieved high homogeneity and illustrated excellent stability in buffers with minimum aggregates, and exceptional stability in rat serum. All ADCs displayed a potent killing of BT-474 breast cancer cells. Moving to the mouse study, the ADCs prepared from two technology routes displayed potent and similar efficacy in a BT-474 xenograft model, which was comparable to an FDA-approved ADC generated from random conjugation. These ADCs also demonstrated excellent safety and did not cause body weight loss at the tested dosages.
Collapse
Affiliation(s)
- Qiang Yang
- GlycoT Therapeutics, College Park, MD 20742, USA
| | - He Chen
- GlycoT Therapeutics, College Park, MD 20742, USA
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Zhihao Zheng
- GlycoT Therapeutics, College Park, MD 20742, USA
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Rakotoarinoro N, Dyck YFK, Krebs SK, Assi MK, Parr MK, Stech M. A disruptive clickable antibody design for the generation of antibody-drug conjugates. Antib Ther 2023; 6:298-310. [PMID: 38107665 PMCID: PMC10720948 DOI: 10.1093/abt/tbad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer cells. The conjugation of the drug-linker to the antibody is a key point in research and development as well as in industrial production. The consensus is to conjugate the drug to a surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver clearance and decreased stability. Methods In contrast, we describe a non-conventional approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a ready-to-click antibody design was created in which an azido-based non-canonical amino acid is introduced within the Fab cavity during antibody synthesis using nonsense suppression technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results This antibody design significantly increased the hydrophilicity of the generated antibody-drug conjugates compared to the current best-in-class designs based on non-canonical amino acids, while conjugation efficiency and functionality were maintained. The robustness of this native shielding effect and the versatility of this approach were also investigated. Conclusions This pioneer design may become a starting point for the improvement of antibody-drug conjugates and an option to consider for protecting drugs and linkers from unspecific interactions.
Collapse
Affiliation(s)
- Nathanaël Rakotoarinoro
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Yan F K Dyck
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simon K Krebs
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Miriam-Kousso Assi
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Department of Biotechnology, Hamburg University of Applied Sciences, 21033 Hamburg, Germany
| | - Maria K Parr
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marlitt Stech
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
16
|
Hsu YP, Nourzaie O, Tocher AE, Nerella K, Ermakov G, Jung J, Fowler A, Wu P, Ayesa U, Willingham A, Beaumont M, Ingale S. Site-Specific Antibody Conjugation Using Modified Bisected N-Glycans: Method Development and Potential toward Tunable Effector Function. Bioconjug Chem 2023; 34:1633-1644. [PMID: 37620302 PMCID: PMC10516122 DOI: 10.1021/acs.bioconjchem.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) have garnered worldwide attention for disease treatment, as they possess high target specificity, a long half-life, and outstanding potency to kill or modulate the functions of targets. FDA approval of multiple ADCs for cancer therapy has generated a strong desire for novel conjugation strategies with high biocompatibility and controllable bioproperties. Herein, we present a bisecting glycan-bridged conjugation strategy that enables site-specific conjugation without the need for the oligosaccharide synthesis and genetic engineering of antibodies. Application of this method is demonstrated by conjugation of anti-HER2 human and mouse IgGs with a cytotoxic drug, monomethyl auristatin E. The glycan bridge showed outstanding stability, and the resulting ADCs eliminated HER2-expressing cancer cells effectively. Moreover, our strategy preserves the feasibility of glycan structure remodeling to fine-tune the immunogenicity and pharmacokinetic properties of ADCs through glycoengineering.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Omar Nourzaie
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Ariel E. Tocher
- MRL,
Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kavitha Nerella
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Grigori Ermakov
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jiwon Jung
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Alexandra Fowler
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Peidong Wu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Umme Ayesa
- MRL, Merck
& Co., Inc., 90 E.
Scott Ave., Rahway, New Jersey 07065, United States
| | - Aarron Willingham
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Sampat Ingale
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
17
|
de Bever L, Popal S, van Schaik J, Rubahamya B, van Delft FL, Thurber GM, van Berkel SS. Generation of DAR1 Antibody-Drug Conjugates for Ultrapotent Payloads Using Tailored GlycoConnect Technology. Bioconjug Chem 2023; 34:538-548. [PMID: 36857521 PMCID: PMC10020967 DOI: 10.1021/acs.bioconjchem.2c00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Indexed: 03/03/2023]
Abstract
GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g., PBD dimers and calicheamicin) can only be administered to patients at low doses (<0.5 mg/kg), which may compromise effective biodistribution and may be insufficient to reach target receptor saturation in the tumor. Here, we show that GlycoConnect technology can be readily extended to DAR1 ADCs without the need of antibody re-engineering. We demonstrate that various ultrapotent, cytotoxic payloads are amenable to this methodology. In a follow-up experiment, HCC-1954 tumor spheroids were treated with either an AlexaFluor647-labeled DAR1 or DAR2 PBD-based ADC to study the effect on tumor penetration. Significant improvement of tumor spheroid penetration was observed for the DAR1 ADC compared to the DAR2 ADC at an equal payload dose, underlining the potential of a lower DAR for ADCs bearing ultrapotent payloads.
Collapse
Affiliation(s)
| | - Sorraya Popal
- Synaffix
BV, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | | | - Baron Rubahamya
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Greg M. Thurber
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
18
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
19
|
Jaramillo ML, Sulea T, Durocher Y, Acchione M, Schur MJ, Robotham A, Kelly JF, Goneau MF, Robert A, Cepero-Donates Y, Gilbert M. A glyco-engineering approach for site-specific conjugation to Fab glycans. MAbs 2023; 15:2149057. [PMID: 36447399 PMCID: PMC9715014 DOI: 10.1080/19420862.2022.2149057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Effective processes for synthesizing antibody-drug conjugates (ADCs) require: 1) site-specific incorporation of the payload to avoid interference with binding to the target epitope, 2) optimal drug/antibody ratio to achieve sufficient potency while avoiding aggregation or solubility problems, and 3) a homogeneous product to facilitate approval by regulatory agencies. In conventional ADCs, the drug molecules are chemically attached randomly to antibody surface residues (typically Lys or Cys), which can interfere with epitope binding and targeting, and lead to overall product heterogeneity, long-term colloidal instability and unfavorable pharmacokinetics. Here, we present a more controlled process for generating ADCs where drug is specifically conjugated to only Fab N-linked glycans in a narrow ratio range through functionalized sialic acids. Using a bacterial sialytransferase, we incorporated N-azidoacetylneuraminic acid (Neu5NAz) into the Fab glycan of cetuximab. Since only about 20% of human IgG1 have a Fab glycan, we extended the application of this approach by using molecular modeling to introduce N-glycosylation sites in the Fab constant region of other therapeutic monoclonal antibodies. We used trastuzumab as a model for the incorporation of Neu5NAz in the novel Fab glycans that we designed. ADCs were generated by clicking the incorporated Neu5NAz with monomethyl auristatin E (MMAE) attached to a self-immolative linker terminated with dibenzocyclooctyne (DBCO). Through this process, we obtained cetuximab-MMAE and trastuzumab-MMAE with drug/antibody ratios in the range of 1.3 to 2.5. We confirmed that these ADCs still bind their targets efficiently and are as potent in cytotoxicity assays as control ADCs obtained by standard conjugation protocols. The site-directed conjugation to Fab glycans has the additional benefit of avoiding potential interference with effector functions that depend on Fc glycan structure.
Collapse
Affiliation(s)
- Maria L. Jaramillo
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Mauro Acchione
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Melissa J. Schur
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - John F. Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Marie-France Goneau
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Alma Robert
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Yuneivy Cepero-Donates
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada,CONTACT Michel Gilbert Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6Ottawa, ON, Canada
| |
Collapse
|