1
|
Son A, Park J, Kim W, Yoon Y, Lee S, Park Y, Kim H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules 2024; 29:4626. [PMID: 39407556 PMCID: PMC11477718 DOI: 10.3390/molecules29194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Guo D, Ng JCF, Dunn-Walters DK, Fraternali F. VCAb: a web-tool for structure-guided exploration of antibodies. BIOINFORMATICS ADVANCES 2024; 4:vbae137. [PMID: 39399372 PMCID: PMC11471263 DOI: 10.1093/bioadv/vbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Motivation Effective responses against immune challenges require antibodies of different isotypes performing specific effector functions. Structural information on these isotypes is essential to engineer antibodies with desired physico-chemical features of their antigen-binding properties, and optimal developability as potential therapeutics. In silico mutational scanning profiles on antibody structures would further pinpoint candidate mutations for enhancing antibody stability and function. Current antibody structure databases lack consistent annotations of isotypes and structural coverage of 3D antibody structures, as well as computed deep mutation profiles. Results The V and C region bearing antibody (VCAb) web-tool is established to clarify these annotations and provides an accessible resource to facilitate antibody engineering and design. VCAb currently provides data on 7,166 experimentally determined antibody structures including both V and C regions from different species. Additionally, VCAb provides annotations of species and isotypes with numbering schemes applied. These information can be interactively queried or downloaded in batch. Availability and implementation VCAb is implemented as a R shiny application to enable interactive data interrogation. The online application is freely accessible https://fraternalilab.cs.ucl.ac.uk/VCAb/. The source code to generate the database and the online application is available open-source at https://github.com/Fraternalilab/VCAb.
Collapse
Affiliation(s)
- Dongjun Guo
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, United Kingdom
| | - Joseph Chi-Fung Ng
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Deborah K Dunn-Walters
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|