1
|
Neuhaus M, Fryklund C, Taylor H, Borreguero-Muñoz A, Kopietz F, Ardalani H, Rogova O, Stirrat L, Bremner SK, Spégel P, Bryant NJ, Gould GW, Stenkula KG. EHD2 regulates plasma membrane integrity and downstream insulin receptor signaling events. Mol Biol Cell 2023; 34:ar124. [PMID: 37703099 PMCID: PMC10846623 DOI: 10.1091/mbc.e23-03-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose-tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics, and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signaling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signaling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.
Collapse
Affiliation(s)
- Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Holly Taylor
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | - Franziska Kopietz
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Hamidreza Ardalani
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Oksana Rogova
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Laura Stirrat
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Shaun K. Bremner
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Peter Spégel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Nia J. Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Gwyn W. Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
2
|
Three live-imaging techniques for comprehensively understanding the initial trigger for insulin-responsive intracellular GLUT4 trafficking. iScience 2022; 25:104164. [PMID: 35434546 PMCID: PMC9010770 DOI: 10.1016/j.isci.2022.104164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 01/31/2023] Open
Abstract
Quantitative features of GLUT4 glucose transporter's behavior deep inside cells remain largely unknown. Our previous analyses with live-cell imaging of intracellular GLUT4 trafficking demonstrated two crucial early events responsible for triggering insulin-responsive translocation processes, namely, heterotypic fusion and liberation. To quantify the regulation, interrelationships, and dynamics of the initial events more accurately and comprehensively, we herein applied three analyses, each based on our distinct dual-color live-cell imaging approaches. With these approaches, heterotypic fusion was found to be the first trigger for insulin-responsive GLUT4 redistributions, preceding liberation, and to be critically regulated by Akt substrate of 160 kDa (AS160) and actin dynamics. In addition, demonstrating the subcellular regional dependence of GLUT4 dynamics revealed that liberated GLUT4 molecules are promptly incorporated into the trafficking itinerary of transferrin receptors. Our approaches highlight the physiological significance of endosomal "GLUT4 molecule trafficking" rather than "GLUT4 vesicle delivery" to the plasma membrane in response to insulin.
Collapse
|
3
|
Sadler JBA, Bryant NJ, Gould GW. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell 2014; 26:530-6. [PMID: 25501368 PMCID: PMC4310743 DOI: 10.1091/mbc.e14-09-1368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The levels of expression, distribution, and association of all of the VAMPs expressed in 3T3-L1 adipocytes are characterized. This is the first systematic analysis of all members of this protein family for any cell type. The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nia J Bryant
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|