1
|
Palicha KA, Loganathan P, Sudha V, Harinipriya S. Monte Carlo simulation and experimental validation of plant microtubules cathode in biodegradable battery. Sci Rep 2023; 13:10393. [PMID: 37369685 DOI: 10.1038/s41598-023-36902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For the first time, electrochemical methods are utilized to study the response of tubulin monomers (extracted from plant source such as Green Peas: Arachis Hypogea) towards charge perturbations in the form of conductivity, conformational changes via self-assembly and adsorption on Au surface. The obtained dimerization and surface adsorption energetics of the tubulins from Cyclic Voltammetry agree well with the literature value of 6.9 and 14.9 kCal/mol for lateral and longitudinal bond formation energy respectively. In addition to the effects of charge perturbations on change in structure, ionic and electronic conductivity of tubulin with increasing load are investigated and found to be 1.25 Sm-1 and 2.89 mSm-1 respectively. The electronic conductivity is 1.93 times higher than the literature value of 1.5 mSm-1, demonstrating the fact that the microtubules (dimer of tubulins, MTs) from plant source can be used as a semiconductor electrode material in energy conversion and storage applications. Thus, motivated by the Monte Carlo simulation and electrochemical results the MTs extracted from plant source are used as cathode material for energy storage device such as Bio-battery and the Galvanostatic Charge/Discharge studies are carried out in coin cell configuration. The configuration of the bio-battery cell is as follows: Al/CB//PP-1M KCl//MTs/SS; where SS and Al are used as current collectors for cathode and anode respectively, Polypropylene (PP) membrane soaked in 1M KCl as electrolyte and Carbon Black (CB) is the anode material. Another configuration of the cell would be replacement of CB by biopolymer such as ethyl cellulose anode (Al/EC/PP-1M KCl/MTs/SS).
Collapse
Affiliation(s)
- Kaushik A Palicha
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India
| | - Pavithra Loganathan
- Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - V Sudha
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India.
| | - S Harinipriya
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India.
| |
Collapse
|
2
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
3
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
4
|
Draguhn A, Mallatt JM, Robinson DG. Anesthetics and plants: no pain, no brain, and therefore no consciousness. PROTOPLASMA 2021; 258:239-248. [PMID: 32880005 PMCID: PMC7907021 DOI: 10.1007/s00709-020-01550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Plants have a rich variety of interactions with their environment, including adaptive responses mediated by electrical signaling. This has prompted claims that information processing in plants is similar to that in animals and, hence, that plants are conscious, intelligent organisms. In several recent reports, the facts that general anesthetics cause plants to lose their sensory responses and behaviors have been taken as support for such beliefs. These lipophilic substances, however, alter multiple molecular, cellular, and systemic functions in almost every organism. In humans and other animals with complex brains, they eliminate the experience of pain and disrupt consciousness. The question therefore arises: do plants feel pain and have consciousness? In this review, we discuss what can be learned from the effects of anesthetics in plants. For this, we describe the mechanisms and structural prerequisites for pain sensations in animals and show that plants lack the neural anatomy and all behaviors that would indicate pain. By explaining the ubiquitous and diverse effects of anesthetics, we discuss whether these substances provide any empirical or logical evidence for "plant consciousness" and whether it makes sense to study the effects of anesthetics on plants for this purpose. In both cases, the answer is a resounding no.
Collapse
Affiliation(s)
- Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jon M Mallatt
- The University of Washington WWAMI Medical Education Program, The University of Idaho, Moscow, ID, 83844, USA
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Baluška F, Reber A. Sentience and Consciousness in Single Cells: How the First Minds Emerged in Unicellular Species. Bioessays 2019; 41:e1800229. [PMID: 30714631 DOI: 10.1002/bies.201800229] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Indexed: 12/13/2022]
Abstract
A reductionistic, bottom-up, cellular-based concept of the origins of sentience and consciousness has been put forward. Because all life is based on cells, any evolutionary theory of the emergence of sentience and consciousness must be grounded in mechanisms that take place in prokaryotes, the simplest unicellular species. It has been posited that subjective awareness is a fundamental property of cellular life. It emerges as an inherent feature of, and contemporaneously with, the very first life-forms. All other varieties of mentation are the result of evolutionary mechanisms based on this singular event. Therefore, all forms of sentience and consciousness evolve from this original instantiation in prokaryotes. It has also been identified that three cellular structures and mechanisms that likely play critical roles here are excitable membranes, oscillating cytoskeletal polymers, and structurally flexible proteins. Finally, basic biophysical principles are proposed to guide those processes that underly the emergence of supracellular sentience from cellular sentience in multicellular organisms.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Arthur Reber
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Chaffey N, Volkmann D, Baluška F. The botanical multiverse of Peter Barlow. Commun Integr Biol 2019; 12:14-30. [PMID: 31156759 PMCID: PMC6529214 DOI: 10.1080/19420889.2019.1575788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Dr Peter Barlow, who died in 2017, was one of the most respected botanists and biologists of the latter half of the 20th Century. His interests covered a wide range of plant biological topics, e.g. root growth and development, plant cytoskeleton, effects of gravity, plant intelligence, pattern formation, and evolution of eukaryotic cells. Here we consider Peter's numerous contributions to the: elucidation of plant patterns; understanding of root biology; role of the plant cytoskeleton in growth and development; influence of the Moon on terrestrial vegetation; Cell Body concept; and plant neurobiology. In so doing we attempt not only to provide an overview of Peter's important work in many areas of plant biology, but also to place that work in the context of recent advances in plant and biological sciences.
Collapse
Affiliation(s)
- Nigel Chaffey
- College of Liberal Arts, Bath Spa University, Bath, UK
| | | | | |
Collapse
|
7
|
Reddy JSK, Pereira C. Understanding the emergence of microbial consciousness: From a perspective of the Subject-Object Model (SOM). J Integr Neurosci 2018; 16:S27-S36. [PMID: 29254105 DOI: 10.3233/jin-170064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms demonstrate conscious-like intelligent behaviour, and this form of consciousness may have emerged from a quantum mediated mechanism as observed in cytoskeletal structures like the microtubules present in nerve cells which apparently have the architecture to quantum compute. This paper hypothesises the emergence of proto-consciousness in primitive cytoskeletal systems found in the microbial kingdoms of archaea, bacteria and eukarya. To explain this, we make use of the Subject-Object Model (SOM) of consciousness which evaluates the rise of the degree of consciousness to conscious behaviour in these systems supporting the hypothesis of emergence and propagation of conscious behaviour during the pre-Cambrian part of Earth's evolutionary history. Consciousness as proto-consciousness or sentience computed via primitive cytoskeletal structures substantiates as a driver for the intelligence observed in the microbial world during this period ranging from single-cellular to collective intelligence as a means to adapt and survive. The growth in complexity of intelligence, cytoskeletal system and adaptive behaviours are key to evolution, and thus supports the progression of the Lamarckian theory of evolution driven by quantum mediated proto-consciousness to consciousness as described in the SOM of consciousness.
Collapse
|
8
|
Vallverdú J, Castro O, Mayne R, Talanov M, Levin M, Baluška F, Gunji Y, Dussutour A, Zenil H, Adamatzky A. Slime mould: The fundamental mechanisms of biological cognition. Biosystems 2018; 165:57-70. [DOI: 10.1016/j.biosystems.2017.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/27/2023]
|
9
|
Facco E, Lucangeli D, Tressoldi P. On the Science of Consciousness: Epistemological Reflections and Clinical Implications. Explore (NY) 2017; 13:163-180. [PMID: 28359768 DOI: 10.1016/j.explore.2017.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Consciousness has been one of the most important and tantalizing issues ever since the origin of philosophy and medicine. The concept of consciousness and the so-called "hard problem" (i.e., the mind-brain relationship) are highly complex topics that have yet to be elucidated, involving the realms of both science and philosophy with profound epistemological implications. In the lively debate on the foundations of the science of consciousness there are several potential biases of an essentially philosophical nature, such as those related to the paradigm and axioms adopted, and the ostensible logical contradiction between monism and dualism. Their origin dates back largely to Descartes' thinking and the birth of the new sciences as a compromise with the Inquisition, but they have been handed down through the Enlightenment and Positivism. A proper investigation of consciousness and the world of subjectivity demands a careful reflection on the paradigm of scientific medicine to identify possible flaws and overcome the limits of the mechanistic-reductionist approach.
Collapse
Affiliation(s)
- Enrico Facco
- Studium Patavinum, University of Padua, Italy; Institute Franco Granone-Italian Center of Clinical & Experimental Hypnosis (CIICS), Turin, Italy.
| | - Daniela Lucangeli
- Department of Developmental Psychology and Socialization, University of Padua, Italy; Human Potential Network Research Foundation, Padua, Italy
| | | |
Collapse
|