1
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 2022; 39:6555011. [PMID: 35348760 PMCID: PMC9004409 DOI: 10.1093/molbev/msac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Collapse
Affiliation(s)
- Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Japan
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, Japan
| |
Collapse
|
4
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
5
|
Kennedy K, Crisafulli EM, Ralph SA. Delayed Death by Plastid Inhibition in Apicomplexan Parasites. Trends Parasitol 2019; 35:747-759. [PMID: 31427248 DOI: 10.1016/j.pt.2019.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023]
Abstract
The discovery of a plastid in apicomplexan parasites was hoped to be a watershed moment in the treatment of parasitic diseases as it revealed drug targets that are implicitly divergent from host molecular processes. Indeed, this organelle, known as the apicoplast, has since been a productive therapeutic target for pharmaceutical interventions against infections by Plasmodium, Toxoplasma, Babesia, and Theileria. However, some inhibitors of the apicoplast are restricted in their treatment utility because of their slow-kill kinetics, and this characteristic is called the delayed death effect. Here we review the recent genetic and pharmacological experiments that interrogate the causes of delayed death and explore the foundation of this phenomenon in Plasmodium and Toxoplasma parasites.
Collapse
Affiliation(s)
- Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Emily M Crisafulli
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
6
|
Füssy Z, Faitová T, Oborník M. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol 2019; 11:1765-1779. [PMID: 31192348 PMCID: PMC6668581 DOI: 10.1093/gbe/evz123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Endosymbioses necessitate functional cooperation of cellular compartments to avoid pathway redundancy and streamline the control of biological processes. To gain insight into the metabolic compartmentation in chromerids, phototrophic relatives to apicomplexan parasites, we prepared a reference set of proteins probably localized to mitochondria, cytosol, and the plastid, taking advantage of available genomic and transcriptomic data. Training of prediction algorithms with the reference set now allows a genome-wide analysis of protein localization in Chromera velia and Vitrella brassicaformis. We confirm that the chromerid plastids house enzymatic pathways needed for their maintenance and photosynthetic activity, but for carbon and nitrogen allocation, metabolite exchange is necessary with the cytosol and mitochondria. This indeed suggests that the regulatory mechanisms operate in the cytosol to control carbon metabolism based on the availability of both light and nutrients. We discuss that this arrangement is largely shared with apicomplexans and dinoflagellates, possibly stemming from a common ancestral metabolic architecture, and supports the mixotrophy of the chromerid algae.
Collapse
Affiliation(s)
- Zoltán Füssy
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Department of Evolutionary Protistology, Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Tereza Faitová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Department of Evolutionary Protistology, Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Engineering and Natural Sciences, Department of Computer Science, Johannes Kepler University, Linz, Austria
| | - Miroslav Oborník
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
- Department of Evolutionary Protistology, Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Abstract
The capture and enslavement of eukaryotic algae by unicellular predators to acquire photosynthesis was a major driving force in early eukaryotic diversification. A genome presented in BMC Biology provides a glimpse of how such a tiny predator might have preyed on red algae and detained them to create new lineages of photosynthetic organisms.
Collapse
|
8
|
Klinger CM, Paoli L, Newby RJ, Wang MYW, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, Cahoon AB, Dorrell RG, Richardson E. Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends. Genome Biol Evol 2018; 10:1019-1038. [PMID: 29617800 PMCID: PMC5888634 DOI: 10.1093/gbe/evy057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Paoli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Robert J Newby
- Department of Biology, Middle Tennessee State University
| | - Matthew Yu-Wei Wang
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | - Hyrum D Carroll
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | | | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Aubery Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise
| | - Richard G Dorrell
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | |
Collapse
|
9
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
10
|
Biddau M, Bouchut A, Major J, Saveria T, Tottey J, Oka O, van-Lith M, Jennings KE, Ovciarikova J, DeRocher A, Striepen B, Waller RF, Parsons M, Sheiner L. Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathog 2018; 14:e1006836. [PMID: 29470517 PMCID: PMC5823475 DOI: 10.1371/journal.ppat.1006836] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondiiapicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1’s involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites. To survive, apicomplexan parasites must adjust to the redox insults they experience. These parasites undergo redox stresses induced by the host cell within which they live, by the host immune system, and by their own metabolic activities. Yet the myriad of cellular processes that are affected by redox changes and that may take part in maintaining the redox balance within the parasite are largely understudied. Thioredoxins are enzymes that link the redox state of subcellular environments to the functional state or the cellular trafficking of their substrate proteins. In this work, we identify two pathways that are controlled by two thioredoxins in the apicomplexan Toxoplasma gondii, and demonstrate that both are essential for parasite survival. We show that each of these enzymes contributes to the function of the apicomplexan plastid, the apicoplast, a unique parasite organelle with importance for drug discovery efforts. We thus highlight that part of the apicomplexan sensitivity to redox imbalance is specifically related to the apicoplast, and point at the importance of thioredoxins in mediating apicoplast biogenesis. Finally, our work raises the potential of apicoplast thioredoxins as new drug targets.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Anne Bouchut
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Jack Major
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Tracy Saveria
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Julie Tottey
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Ojore Oka
- Institute of Molecular Cell and Systems Biology, Wolfson Link Building, University of Glasgow, Glasgow, United Kingdom
| | - Marcel van-Lith
- Institute of Molecular Cell and Systems Biology, Wolfson Link Building, University of Glasgow, Glasgow, United Kingdom
| | - Katherine Elizabeth Jennings
- Center for Tropical & Emerging Global Diseases, University of Georgia, Brooks Dr. Athens, GA, United States of America
| | - Jana Ovciarikova
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
| | - Amy DeRocher
- Center for Infectious Disease Research, Seattle, WA, United States of America
| | - Boris Striepen
- Center for Tropical & Emerging Global Diseases, University of Georgia, Brooks Dr. Athens, GA, United States of America
| | | | - Marilyn Parsons
- Center for Infectious Disease Research, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Lilach Sheiner
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
12
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. Methods Mol Biol 2018; 1829:17-35. [PMID: 29987712 DOI: 10.1007/978-1-4939-8654-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
Collapse
Affiliation(s)
- Zoltán Füssy
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
13
|
Strassert JFH, Karnkowska A, Hehenberger E, Del Campo J, Kolisko M, Okamoto N, Burki F, Janouškovec J, Poirier C, Leonard G, Hallam SJ, Richards TA, Worden AZ, Santoro AE, Keeling PJ. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME JOURNAL 2017; 12:304-308. [PMID: 28994824 DOI: 10.1038/ismej.2017.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/15/2017] [Accepted: 07/27/2017] [Indexed: 11/10/2022]
Abstract
Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Karnkowska
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elisabeth Hehenberger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Kolisko
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabien Burki
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan Janouškovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Guy Leonard
- Biosciences, University of Exeter, Exeter, UK
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
15
|
Füssy Z, Masařová P, Kručinská J, Esson HJ, Oborník M. Budding of the Alveolate Alga Vitrella brassicaformis Resembles Sexual and Asexual Processes in Apicomplexan Parasites. Protist 2016; 168:80-91. [PMID: 28061382 DOI: 10.1016/j.protis.2016.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
Ease of cultivation and availability of genomic data promoted intensive research of free-living phototrophic relatives of apicomplexans, i.e. Chromera velia and Vitrella brassicaformis. Chromera and Vitrella differ significantly in their physiology, morphology, phylogenetic position and genomic features, but Vitrella has not gained as much attention. Here we describe two types of Vitrella zoosporangia. One contains zoospores surrounded by roughly structured matter, with an intracytoplasmic axoneme predicted to develop into a mature flagellum upon spore release, similarly to Plasmodium microgametes; in the second type, cells concurrently bud off the center of the sporangium, surrounded by smooth matter, and flagella develop extracellularly. This process of budding is reminiscent of microsporogenesis as seen in Toxoplasma. We suggest one (or both) of these processes generates gamete-like flagellate progeny. Based on live staining, fusion of zoospores does occur in cultures of V. brassicaformis. We failed to find an apical structure similar to the pseudoconoid in any life stage. V. brassicaformis may therefore either represent an ancestral state lacking an apical complex or has lost the apical complex secondarily. We propose that the common ancestor of Apicomplexa and "chrompodellids" exhibited a complex life cycle, which was reduced in chromerids and colpodellids as dictated by their environment.
Collapse
Affiliation(s)
- Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petra Masařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jitka Kručinská
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Heather J Esson
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia; Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia.
| |
Collapse
|
16
|
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLoS One 2016; 11:e0166338. [PMID: 27861576 PMCID: PMC5115734 DOI: 10.1371/journal.pone.0166338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the “green” dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts (“dinotoms”): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Collapse
|
17
|
McFadden GI, Yeh E. The apicoplast: now you see it, now you don't. Int J Parasitol 2016; 47:137-144. [PMID: 27773518 DOI: 10.1016/j.ijpara.2016.08.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.
Collapse
Affiliation(s)
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford, CA, USA; Department of Pathology, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|