1
|
Ithaí Ángeles-López Y, José Martínez-Cano D, Villa-Ruano N. What Do We Know About Capsicum Volatilome? Chem Biodivers 2024:e202401444. [PMID: 39422289 DOI: 10.1002/cbdv.202401444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
The Capsicum genus includes several cultivated species that release complex blends of volatile organic compounds (VOCs) associated with their unique aroma. These VOCs are essential info-chemicals in ecological interactions. In this review, we describe how the volatilomic profiling naturally varies based on specific plant organs and genotypes as well as how non-beneficial organisms affect VOCs biosynthesis and accumulation in pepper plants. Also, we show evidence about VOCs variation under the pressure of different abiotic factors such as water stress, soil type and nutrient availability. The contribution of specific metabolic pathways and gene expression related to the biosynthesis of particular VOCs is addressed. We highlighted the utility of VOCs as chemical markers for quality control in the food industry, breeding programs to generate resistant plants and to improve aroma innovation. Herein we present a database containing 2734 VOCs, revealing 113 as the basic core of the volatilome from five Capsicum species.
Collapse
Affiliation(s)
- Yesenia Ithaí Ángeles-López
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P., 72570, Puebla, México
| | - David José Martínez-Cano
- Colegio de la Frontera Sur, Departamento de Ciencias de la Sustentabilidad, Unidad Tapachula., Carretera Antiguo Aeropuerto km 2.5, 30700, Tapachula, Chiapas, México
| | - Nemesio Villa-Ruano
- CONAHCYT - Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P,., 72570, Puebla, México
| |
Collapse
|
2
|
Haas RA, Crișan I, Vârban D, Vârban R. Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission. PLANTS (BASEL, SWITZERLAND) 2024; 13:1687. [PMID: 38931119 PMCID: PMC11207455 DOI: 10.3390/plants13121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.
Collapse
Affiliation(s)
| | - Ioana Crișan
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania; (R.A.H.); (D.V.); (R.V.)
| | | | | |
Collapse
|
3
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
4
|
Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:529-554. [PMID: 34409450 DOI: 10.1093/jxb/erab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of volatile organic compounds (VOCs) in plants is triggered in response to external stimuli, and these compounds can migrate to distal tissues and neighbouring receivers. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, functional properties of VOCs produced in response to phytopathogens, beneficial microorganisms, resistance inducers, and abiotic factors have been less studied. In this review, we focused on the emission patterns and potential biological functions of VOCs produced by grapevines in response to stimuli. Specific grapevine VOCs are emitted in response to the exogenous stimulus, suggesting their precise involvement in plant defence response. VOCs with inhibitory activities against pathogens and responsible for plant resistance induction are reported, and some of them can also be used as biomarkers of grapevine resistance. Likewise, VOCs produced in response to beneficial microorganisms and environmental factors are possible mediators of grapevine-microbe communications and abiotic stress tolerance. Although further functional studies may improve our knowledge, the existing literature suggests that VOCs have an underestimated potential application as pathogen inhibitors, resistance inducers against biotic or abiotic stresses, signalling molecules, membrane stabilizers, and modulators of reactive oxygen species. VOC patterns could also be used to screen for resistant traits or to monitor the plant physiological status.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Sara Avesani
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
5
|
Llusià J, Asensio D, Sardans J, Filella I, Peguero G, Grau O, Ogaya R, Gargallo-Garriga A, Verryckt LT, Van Langenhove L, Brechet LM, Courtois E, Stahl C, Janssens IA, Peñuelas J. Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149769. [PMID: 34464786 DOI: 10.1016/j.scitotenv.2021.149769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 μg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 μg m-2 h-1) and P (sesquiterpenes: 210 μg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.
Collapse
Affiliation(s)
- Joan Llusià
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain.
| | - Dolores Asensio
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Jordi Sardans
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Iolanda Filella
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Guille Peguero
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Oriol Grau
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Romà Ogaya
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Albert Gargallo-Garriga
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Lore T Verryckt
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Leandro Van Langenhove
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laëtitia M Brechet
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana; Center of Excellence Global Change Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Elodie Courtois
- Laboratoire Ecologie, Evolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, French Guiana
| | - Clément Stahl
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana
| | - Ivan A Janssens
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Josep Peñuelas
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| |
Collapse
|
6
|
Bancal MO. Plant-plant communication in variety mixtures plays on disease susceptibility and immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6084-6086. [PMID: 34592757 PMCID: PMC8483780 DOI: 10.1093/jxb/erab377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on: Pélissier R, Buendia L, Brousse A, Temple C, Ballini E, Fort F, Violle C, Morel JB. 2021. Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures. Journal of Experimental Botany 72, 6570–6580.
Collapse
Affiliation(s)
- Marie-Odile Bancal
- AgroParisTech, University Paris-Saclay, France
- INRAE, ECOSYS, UMR 1402, F-78350 Thiverval-Grignon, France
| |
Collapse
|
7
|
Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. PLANT, CELL & ENVIRONMENT 2021; 44:1030-1043. [PMID: 33047347 PMCID: PMC8048923 DOI: 10.1111/pce.13910] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Volatile organic compounds are important mediators of mutualistic interactions between plants and their physical and biological surroundings. Volatiles rapidly indicate competition or potential threat before these can take place, and they regulate and coordinate adaptation responses in neighbouring plants, fine-tuning them to match the exact stress encountered. Ecological specificity and context-dependency of plant-plant communication mediated by volatiles represent important factors that determine plant performance in specific environments. In this review, we synthesise the recent progress made in understanding the role of plant volatiles as mediators of plant interactions at the individual and community levels, highlighting the complexity of the plant receiver response to diverse volatile cues and signals and addressing how specific responses shape plant growth and survival. Finally, we outline the knowledge gaps and provide directions for future research. The complex dialogue between the emitter and receiver based on either volatile cues or signals determines the outcome of information exchange, which shapes the communication pattern between individuals at the community level and determines their ecological implications at other trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Dimitrije Markovic
- Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
- Faculty of Agriculture, University of Banja LukaBanja LukaBosnia and Herzegovina
| | - Merlin Rensing
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
8
|
Yamashita F, Rodrigues AL, Rodrigues TM, Palermo FH, Baluška F, de Almeida LFR. Potential Plant-Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum ( Sorghum bicolor). PLANTS 2021; 10:plants10030485. [PMID: 33806670 PMCID: PMC8001897 DOI: 10.3390/plants10030485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Despite the fact that they are sessile organisms, plants actively move their organs and also use these movements to manipulate the surrounding biotic and abiotic environments. Plants maintain communication with neighboring plants, herbivores, and predators through the emission of diverse chemical compounds by their shoots and roots. These infochemicals modify the environment occupied by plants. Moreover, some infochemicals may induce morphophysiological changes of neighboring plants. We have used methyl-jasmonate (MeJa), a plant natural infochemical, to trigger communication between emitters and receivers Sorghum bicolor plants. The split roots of two plants were allocated to three different pots, with the middle pot containing the roots of both plants. We scored low stomatal conductance (gS) and low CO2 net assimilation (A) using the plants that had contact with the infochemical for the first time. During the second contact, these parameters showed no significant differences, indicating a memory effect. We also observed that the plants that had direct leaf contact with MeJa transmitted sensory information through their roots to neighboring plants. This resulted in higher maximum fluorescence (FM) and structural changes in root anatomy. In conclusion, MeJa emerges as possible trigger for communication between neighboring sorghum plants, in response to the environmental challenges.
Collapse
Affiliation(s)
- Felipe Yamashita
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
- Correspondence:
| | - Angélica Lino Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Tatiane Maria Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Fernanda Helena Palermo
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
| | - Luiz Fernando Rolim de Almeida
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| |
Collapse
|