1
|
Irik HA, Bikmaz G. Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Sci Rep 2024; 14:6929. [PMID: 38519514 PMCID: PMC10960046 DOI: 10.1038/s41598-024-55325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
Soil and water salinity is an important limiting factor affecting yield and production levels in arid and semi-arid areas. Salt tolerance during germination is an important parameter that also affects the other plant development stages. In this respect, this study was designed to determine the responses of pumpkin seed varieties (Develi, Ürgüp, Hybrid) to different NaCl salinities. The study was carried out in 2022 in the laboratory of Biosystems Engineering Department of Erciyes University in randomized plots design with 3 replications. Experiments were conducted with 5 different water salinity. Germination percentage (GP), germination index (GI), mean germination time (MGT), seedling vigor index (SVI), ion leakage (Il), radicula length (RL) and plumule length (PL), root and shoot fresh and dry weights and some mineral composition (Na, K, Ca) were examined. Proline, antioxidant capacity, total phenolic and DPPH content were significantly affected by salinity. In scatter plot correlation analysis SVI a positive correlation was observed between GP (r2 = 0.774), GI (r2 = 0.745), RL (r2 = 0.929), FRW (r2 = 0.837), FSW (r2 = 0.836), DRW (r2 = 0.894), AC (r2 = 0.747), TP (r2 = 0.640) and DPPH (r2 = 0.635). It was determined that there were negative correlations between SVI and MGT (r2 = - 0.902), II (r2 = - 0.588), DSW (r2 = - 0.682) and PR (r2 = - 0.344). Present findings revealed that investigated parameters were significantly affected by increasing salinity levels. While Hybrid cultivar was the most affected by salinity, Develi cultivar was found to be resistant to saline conditions.
Collapse
Affiliation(s)
- Hasan Ali Irik
- Department of Biosystems Engineering, Faculty of Agriculture, University of Erciyes, Kayseri, Turkey.
| | - Gülsah Bikmaz
- Department of Biosystems Engineering, Institute of Graduate School of Natural and Applied Sciences, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
2
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
3
|
Ashraf MA, Rasheed R, Rizwan M, Hussain I, Aslam R, Qureshi FF, Hafiza BS, Bashir R, Ali S. Effect of exogenous taurine on pea (Pisum sativum L.) plants under salinity and iron deficiency stress. ENVIRONMENTAL RESEARCH 2023; 223:115448. [PMID: 36773638 DOI: 10.1016/j.envres.2023.115448] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil salinity and Fe deficiency affect plant growth and survival by changing nutrient availability and disrupting water balance. Natural and human activities, such as evaporation and deforestation, can intensify these soil conditions. Taurine, a novel growth regulator, holds promise in mediating plant defense responses. Its effects on defense responses are still unclear. Previously, taurine showed potential in improving clover tolerance to alkaline stress and manganese toxicity. Taurine impact on plant growth under Fe deficiency and salinity stress remains uninvestigated. A pot experiment was conducted to evaluate the effects of taurine on pea plant growth, ion uptake, and defense strategies in response to salt stress and Fe deficiency. Iron deficiency was established by substituting 0.1 mM FeSO4 for 0.1 mM Fe-EDTA in the nutrient solution. Salinity stress was induced by incorporating a mixture of NaCl, MgCl2, KCl, Na2SO4, Na2CO3, NaHCO3 and CaCl2 in a 1:1:1:1:1:1:1 ratio to produce a salinity concentration of 100 mM. The simultaneous imposition of salinity and Fe deficiency significantly exacerbated oxidative stress, as evidenced by elevated levels of relative membrane permeability, hydrogen peroxide (H2O2), superoxide radical (O2•-), methylglyoxal (MG), malondialdehyde (MDA), and increased activity of lipoxygenase (LOX). Salinity stress alone and the combination of salinity and Fe deficiency resulted in substantial accumulation of Na+ ions that impeded acquisition of essential nutrients. Taurine (100 and 200 mg L-1) notably improved osmotic adjustment and oxidative defense to diminish water imbalance and oxidative injury in plants under stress. These results suggest that exogenous taurine may serve as a promising means of mitigating the detrimental effects of salt stress and Fe deficiency in plants.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ramish Aslam
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Freeha Fatima Qureshi
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Barira Shoukat Hafiza
- NIAB-C, Pakistan Institute for Engineering and Applied Sciences, Islamabad, Pakistan
| | - Rohina Bashir
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
4
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
5
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
6
|
Fadiji AE, Orozco-Mosqueda MDC, Santos-Villalobos SDL, Santoyo G, Babalola OO. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223090. [PMID: 36432820 PMCID: PMC9698351 DOI: 10.3390/plants11223090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world's food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant's development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2568
| |
Collapse
|
7
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
9
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
10
|
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Ravanbakhsh M. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.). BMC PLANT BIOLOGY 2022; 22:322. [PMID: 35790900 PMCID: PMC9254424 DOI: 10.1186/s12870-022-03703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glycyrrhiza glabra L. is a medicinal and industrial plant that has gone extinct due to different abiotic stress caused by climate change. To understand how the plant-associated microorganism can support this plant under salinity, we collected sixteen Iranian accessions of G. glabra L., inoculated their rhizomes with Azotobacter sp. (two levels, bacterial treatments, and no-bacterial treatments, and grown them under salinity stress (NaCl levels; 0, and 200 mM). RESULTS Two accessions of Bardsir and Bajgah significantly showed higher resistant to salinity, for example by increasing crown diameter (11.05 and 11 cm, respectively) compared to an average diameter of 9.5 in other accessions. Azotobacter inoculation caused a significant increase in plant height and crown diameter. Among studied accessions, Kashmar (46.21%) and Ilam (44.95%) had the highest rate of membrane stability index (MSI). Evaluation of enzyme activity represented that bacterial application under salinity, increased polyphenol oxidase (PPO) (0.21 U mg-1 protein), peroxidase (POD) (3.09 U mg-1 protein U mg-1 protein), and phenylalanine ammonia-lyase (PAL) (17.85 U mg-1 protein) activity. Darab accession showed the highest increase (6.45%) in antioxidant potential compared with all studied accessions under Azotobacter inoculation. According to principal component analysis (PCA), it was found that the accession of Meshkinshahr showed a more remarkable ability to activate its enzymatic defense system under salt stress. Also, three accessions of Meshkinshahr, Eghlid, and Ilam were categorized in separated clusters than other accessions regarding various studied treatments. CONCLUSION Analysis indicated that five accessions of Meshkinshahr, Rabt, Piranshahr, Bardsir, and Kermanshah from the perspective of induced systematic resistance are the accessions that showed a greater morphophysiological and biochemical outcome under salinity. This study suggested that, inoculation of with Azotobacter on selected accession can relieve salt stress and support industrial mass production under abiotic condition.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | | | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammadhossein Ravanbakhsh
- Institute of Environmental Biology, Ecology and Biodiversity Group, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Gritli T, Boubakri H, Essahibi A, Hsouna J, Ilahi H, Didier R, Mnasri B. Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1191-1206. [PMID: 35910445 PMCID: PMC9334493 DOI: 10.1007/s12298-022-01205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Arid and semi-arid areas are considered vulnerable to various environmental constraints which are further fortified by climate change. Salinity is one of the most serious abiotic factors affecting crop yield and soil fertility. Till now, no information is available on the effect of salinity on development and symbiotic nitrogen (N2) fixation in the legume species Lathyrus cicera. Here, we evaluated the effect of different microbial inocula including nitrogen-fixing Rhizobium laguerreae, arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, a complex mixed inoculum of AMF isolated from rhizospheric soil in "Al Aitha", and various plant growth-promoting bacteria (PGPB) including Bacillus subtilus, Bacillus simplex and Bacillus megaterium combined with Rhizobium, the AMF consortium, or R. irregularis on alleviating salt stress in this legume. A pot trial was conducted to evaluate the ability of different microbial inocula to mitigate adverse effects of salinity on L. cicera plants. The results showed that salinity (100 mM NaCl) significantly reduced L. cicera plant growth. However, inoculation with different inocula enhanced plant growth and markedly promoted various biochemical traits. Moreover, the combined use of PGPB and AMF was found to be the most effective treatment in mitigating deleterious effects of salinity stress on L. cicera. In addition, this co-inoculation upregulated the expression of two marker genes (LcHKT1 and LcNHX7) related to salinity tolerance. Our findings suggest that the AMF/PGPB formulation has a great potential to be used as a biofertilizer to improve L. cicera plant growth and productivity under saline conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01205-4.
Collapse
Affiliation(s)
- Takwa Gritli
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | | | - Jihed Hsouna
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Reinhardt Didier
- Department of Biology, Rte. Albert-Gockel 3, CH- 1700 Fribourg, Switzerland
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
12
|
Chen J, Sharifi R, Khan MSS, Islam F, Bhat JA, Kui L, Majeed A. Wheat Microbiome: Structure, Dynamics, and Role in Improving Performance Under Stress Environments. Front Microbiol 2022; 12:821546. [PMID: 35095825 PMCID: PMC8793483 DOI: 10.3389/fmicb.2021.821546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Wheat is an important cereal crop species consumed globally. The growing global population demands a rapid and sustainable growth of agricultural systems. The development of genetically efficient wheat varieties has solved the global demand for wheat to a greater extent. The use of chemical substances for pathogen control and chemical fertilizers for enhanced agronomic traits also proved advantageous but at the cost of environmental health. An efficient alternative environment-friendly strategy would be the use of beneficial microorganisms growing on plants, which have the potential of controlling plant pathogens as well as enhancing the host plant's water and mineral availability and absorption along with conferring tolerance to different stresses. Therefore, a thorough understanding of plant-microbe interaction, identification of beneficial microbes and their roles, and finally harnessing their beneficial functions to enhance sustainable agriculture without altering the environmental quality is appealing. The wheat microbiome shows prominent variations with the developmental stage, tissue type, environmental conditions, genotype, and age of the plant. A diverse array of bacterial and fungal classes, genera, and species was found to be associated with stems, leaves, roots, seeds, spikes, and rhizospheres, etc., which play a beneficial role in wheat. Harnessing the beneficial aspect of these microbes is a promising method for enhancing the performance of wheat under different environmental stresses. This review focuses on the microbiomes associated with wheat, their spatio-temporal dynamics, and their involvement in mitigating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | | | - Faisal Islam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Ling Kui
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aasim Majeed
- Plant Molecular Genetics Laboratory, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|