1
|
Buta MB, Posten C, Emire SA, Meinhardt AK, Müller A, Greiner R. Effects of phytase-supplemented fermentation and household processing on the nutritional quality of Lathyrus sativus L. seeds. Heliyon 2020; 6:e05484. [PMID: 33241152 PMCID: PMC7672292 DOI: 10.1016/j.heliyon.2020.e05484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is commonly consumed in cooked, fermented, and roasted forms in Ethiopia. However, the impacts of household processing practices on its nutrients, antinutrients, and toxic compounds have not been adequately studied. Therefore, the effects of household processing and fermentation in the presence and absence of a phytase on the contents of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), myo-inositol phosphates, crude protein, minerals and the in vitro bioaccessibility were investigated. Fermentation exhibited a significant decline in β-ODAP (13.0-62.0%) and phytate (7.3-90.5%) irrespective of the presence of phytase. Pressure and pan cooking after discarding the soaking water resulted in a 27.0 and 16.2% reduction in β-ODAP. A 30% reduction in phytate was observed during germination followed by roasting. In addition, germination resulted in a significant (p < 0.05) increase in crude protein. Germination and germination followed by roasting resulted in the highest Fe bioaccessibilities (more than 25 fold higher compared to untreated samples) followed by pressure cooking and soaking. Processing also improved Zn bioaccessibilities by 50.0% (soaked seed without soaking water), 22.5% (soaked seed with soaking water), and 4.3% (germination). Thus, the processing technologies applied were capable of reducing the content of phytate (InsP6) and β-ODAP with a concomitant increase in mineral bioaccessibilities. Processing of grass peas could therefore contribute to their more widespread utilization.
Collapse
Affiliation(s)
- Meseret Bekele Buta
- School of Chemical and Bioengineering, Department of Food Engineering, Addis Ababa Institute of Technology, P.O.B: 1176, Addis Ababa, Ethiopia
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
- Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- College of Biological and Chemical Engineering, Department of Food Process Engineering, Addis Ababa Science and Technology University, P.O.B: 16417, Addis Ababa, Ethiopia
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Shimelis Admassu Emire
- School of Chemical and Bioengineering, Department of Food Engineering, Addis Ababa Institute of Technology, P.O.B: 1176, Addis Ababa, Ethiopia
| | - Ann-Katrin Meinhardt
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Alexandra Müller
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Babaahmadifooladi M, Jacxsens L, Van de Wiele T, Laing GD. Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Res Int 2019; 129:108866. [PMID: 32036919 DOI: 10.1016/j.foodres.2019.108866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
Abstract
The metal nickel is well known to cause nickel allergy in sensitive humans by prolonged dermal contact to materials releasing (high) amounts of nickel. Oral nickel exposure via water and food intake is of potential concern. Nickel is essential to plants and animals and can be naturally found in food products or contamination may occur across the agro-food chain. This gap analysis is an evaluation of nickel as a potential food safety hazard causing a risk for human health. In the first step, the available data regarding the occurrence of nickel and its contamination in food and drinks have been collected through literature review. Subsequently, a discussion is held on the potential risks associated with this contamination. Elevated nickel concentrations were mostly found in plant-based foods, e.g. legumes and nuts in which nickel of natural origin is expected. However, it was observed that dedicated and systematic screening of foodstuffs for the presence of nickel is currently still lacking. In a next step, published studies on exposure of humans to nickel via foods and drinks were critically evaluated. Not including bioaccessibility and/or bioavailability of the metal may lead to an overestimation of the exposure of the body to nickel via food and drinks. This overestimation may be problematic when the measured nickel level in foods is high and bioaccessibility and/or bioavailability of nickel in these products is low. Therefore, this paper analyzes the outcomes of the existing dietary intake and bioaccessibility/bioavailability studies conducted for nickel. Besides, the available gaps in nickel bioaccessibility and/or bioavailability studies have been clarified in this paper. The reported bioaccessibility and bioavailability percentages for different food and drinks were found to vary between <LOD and 83% and between 0 and 30% respectively. This indicates that of the total nickel contained in the foodstuffs only a fraction can be absorbed by the intestinal epithelium cells. This paper provides a unique critical overview on nickel in the human diet starting from factors affecting its occurrence in food until its absorption by the body.
Collapse
Affiliation(s)
- Mehrnoosh Babaahmadifooladi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
3
|
D'Haese PC, Douglas G, Verhulst A, Neven E, Behets GJ, Vervaet BA, Finsterle K, Lürling M, Spears B. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. CHEMOSPHERE 2019; 220:286-299. [PMID: 30590295 DOI: 10.1016/j.chemosphere.2018.12.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 05/22/2023]
Abstract
The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies. In addition to their therapeutic use for the reduction of intestinal phosphate absorption in patients with impaired renal function, the phosphate binding capacity of aluminium and lanthanum also led to the development of materials used for water treatment. Although lanthanum and aluminium share physicochemical similarities and have many common applications, their uptake and kinetics within the human body and living organisms importantly differ from each other which is reflected in a different toxicity profile. Whilst a causal role in the development of neurological pathologies, skeletal lesions, hematopoietic disorders and respiratory effects has unequivocally been demonstrated with increased exposure to aluminium, studies until now have failed to find such a clear association after exposure to lanthanum although caution is warranted. Our review indicates that lanthanum and aluminium have a distinctly different profile with respect to their potential effects on human health. Regular monitoring of both aluminium and lanthanum concentrations in lanthanum-/aluminium-treated water by the responsible authorities is recommended to avoid acute accidental or chronic low level accumulation.
Collapse
Affiliation(s)
- Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium.
| | | | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Geert J Behets
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Karin Finsterle
- Abteilung Limnologie, Institut Dr. Nowak, Mayenbrook 1, 28870 Ottersberg, Germany
| | - Miquel Lürling
- Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | - Bryan Spears
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| |
Collapse
|
4
|
Liao ZH, Chen YJ, Tzen JTC, Kuo PC, Lee MR, Mai FD, Rairat T, Chou CC. Effect of teapot materials on the chemical composition of oolong tea infusions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:751-757. [PMID: 28675436 DOI: 10.1002/jsfa.8522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/01/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. RESULTS For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. CONCLUSION Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zih-Hui Liao
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ying-Jie Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jason Tze-Cheng Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tirawat Rairat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Çiftçi TD, Henden E. Leaching of arsenic from glazed and nonglazed potteries into foods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1530-1535. [PMID: 27392578 DOI: 10.1016/j.scitotenv.2016.06.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Potteries are traditionally used for cooking and storing foods in Turkey, the Mediterranean, and Middle East regions. Leaching of inorganic arsenic into the traditional white bean dish cooked in pottery has been determined for the first time in the literature. Accuracy of this method was validated by the analysis of a certified reference material, commercially marketed standard solutions, and arsenic spiked solutions. Locally available potteries were examined for the leaching studies. Variation in the leachability of inorganic arsenic from the potteries by acetic acid versus the number of use was studied. The concentrations of arsenic leached by 4% acetic acid decreased by the usage number. The glazed potteries released arsenic at lower concentrations to leaching by acetic acid than the same group of nonglazed potteries. The concentrations of leached arsenic were relatively high in the white bean dish, where the leach of arsenic from the potteries to acetic acid was low. All of the potteries examined released inorganic arsenic to white bean dish in concentrations that exceed the daily BMDL0.5 (210μg/day). However, because the potteries are used only about once a month, direct application of the daily dietary intake limits is not appropriate. According to the weekly BMDL0.5, the estimated contribution from arsenic was in the range of 34-79% of BMDL0.5. The results of this study showed that the potteries are the potential sources of arsenic. Pottery oiling in ovens, which is another traditional procedure before using the potteries, reduced the leaching of arsenic to foods.
Collapse
Affiliation(s)
- Tülin Deniz Çiftçi
- Department of Chemistry, Faculty of Science, University of Ege, 35100 Bornova, Izmir, Turkey.
| | - Emür Henden
- Department of Chemistry, Faculty of Science, University of Ege, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
6
|
Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
7
|
Abstract
Functional foods have been identified as whole foods and fortified, enriched, or enhanced products which have a potentially beneficial effect on health when consumed as part of a varied diet on a regular basis, at effective levels. As consumer awareness on functional food escalates, the interest towards conducting scientific studies in this field has also proportionately increased. Many of the traditional food products are known to possess bioactive components, thus qualifying as functional food. Kombucha tea is produced by fermenting sugared black tea with a mixed culture of yeast and bacteria. Kombucha tea has gained immense popularity in recent times due to many associated health benefits. The therapeutic effects of this beverage are thought to be derived from the chemical composition of this beverage, mainly the polyphenols and secondary metabolites which are produced during fermentation. However, the safety aspects of the beverage also need to be taken into account when qualifying the beverage as a functional food. Nevertheless, Kombucha tea could be easily recognized as a beverage which is able to replace the consumption of carbonated beverages due to its possession of health benefits and therapeutic properties.
Collapse
|
8
|
Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IMF, Momoli F, Krewski D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 2014; 44 Suppl 4:1-80. [PMID: 25233067 PMCID: PMC4997813 DOI: 10.3109/10408444.2014.934439] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
Collapse
Affiliation(s)
- Calvin C. Willhite
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
| | | | - Robert A. Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Thomas M. Wisniewski
- Departments of Neurology, Psychiatry and Pathology, New York University School of Medicine, New York City, New York, USA
| | - Ian M. F. Arnold
- Occupational Health Program, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Franco Momoli
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Olivares Arias V, Valverde Som L, Quiros Rodríguez V, García Romero R, Muñoz N, Navarro Alarcón M, Cabrera Vique C. Níquel en alimentos y factores influyentes en sus niveles, ingesta, biodisponibilidad y toxicidad: una revisión. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.917383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Petit D, El Houari W, Jacobs K, Baeyens W, Leermakers M. Trace element content in tea brewed in traditional metallic and stainless steel teapots. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:8957-8966. [PMID: 23712458 DOI: 10.1007/s10661-013-3226-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
The migration of metals in tea brewed in metallic teapots was investigated. The teapots were obtained from North Africa stores in Brussels in 2005-2006 and in 2011. Chinese gunpowder green tea, the most commonly used tea in the Moroccan community, was used to prepare the tea. Tea brewed in metallic teapots was compared to tea brewed in a glass vessel in order to evaluate the contribution of the tea and the teapots to the metal concentrations in the brewed tea. Tea samples were also collected in Moroccan households and in tearooms in Brussels. The elements As, Cd, Pb, Sn, Mn, Fe, Cr, Co, Ni, Cr, Cu, Zn, and Al were analyzed by high-resolution sector field inductively coupled mass spectrometry. The relationship between the metal composition of the alloy of the teapot and the metal concentration in tea was also investigated. Migration of Pb and to a lesser amount Ni, Cu, and Zn was observed in brass teapots and migration of Cd from a number of stainless steel teapots was observed. The soldering connecting the sprout to the teapot was shown to be an important source of Pb to the tea. High levels of Mn and Al were also observed in the brewed tea and these elements where shown to originate from the tea itself. Metal exposure from tea drinking was calculated for different tea consumption levels and different metal concentration levels and compared to toxicological reference values.
Collapse
Affiliation(s)
- D Petit
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | |
Collapse
|
11
|
Validation of a LC–MS Method for the Determination of Urea Contamination in Market Teas. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9590-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|