1
|
Li L, Zhang L, Luo L, Shen F, Zhao Y, Wu H, Huang Y, Hou R, Yue B, Zhang X. Adaptive Expression and ncRNA Regulation of Genes Related to Digestion and Metabolism in Stomach of Red Pandas during Suckling and Adult Periods. Animals (Basel) 2024; 14:1795. [PMID: 38929414 PMCID: PMC11200446 DOI: 10.3390/ani14121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close phylogenetic relationship. To further investigate the molecular mechanisms of dietary changes and nutrient utilization in red pandas from suckling to adult, comparative analysis of the whole transcriptome was performed on stomach tissues from red pandas and ferrets during the suckling and adult periods. The main results are as follows: (1) we identified ncRNAs for the first time in stomach tissues of both species, and found significant expression changes of 109 lncRNAs and 106 miRNAs in red pandas and 756 lncRNAs and 109 miRNAs in ferrets between the two periods; (2) up-regulated genes related to amino acid transport regulated by lncRNA-miRNA-mRNA networks may efficiently utilize limited bamboo amino acids in adult red pandas, while up-regulated genes related to amino acid degradation regulated by lncRNAs may maintain the balance of amino acid metabolism due to larger daily intakes in adult ferrets; and (3) some up-regulated genes related to lipid digestion may contribute to the utilization of rich nutrients in milk for the rapid growth and development of suckling red pandas, while up-regulated genes associated with linoleic acid metabolism regulated by lncRNA-miRNA-mRNA networks may promote cholesterol decomposition to reduce health risks for carnivorous adult ferrets. Collectively, our study offers evidence of gene expression adaptation and ncRNA regulation in response to specific dietary changes and nutrient utilization in red pandas during suckling and adult periods.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Lijun Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| |
Collapse
|
2
|
Lee GY, Yang SM, Kim HY. Development and intralaboratory validation of three Arcidae species using a multiplex polymerase chain reaction assay combined with capillary electrophoresis. Food Sci Biotechnol 2023; 32:1395-1404. [PMID: 37457413 PMCID: PMC10348964 DOI: 10.1007/s10068-023-01269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Recently, various commercial ark shell products were being sold, and in the case of processed foods, the loss of morphological traits makes species identification visually challenging, which can lead to seafood fraud. Therefore, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously identify three ark shells. The specific PCR amplicon sizes of the generated species-specific primer pairs were observed to be 99 bp for Anadara kagoshimensis, 148 bp for Anadara broughtonii, and 207 bp for Tegillarca granosa. Specificity was confirmed for 17 fish and shellfish, and only the target was amplified without cross-reactivity. The detection limit for the multiplex PCR assay was 1 pg. Furthermore, 31 commercial products were evaluated to assess the developed assay's applicability. Therefore, the analytical approach used in this study can rapidly and accurately identify ark shells in commercial food, and may be used as an authentication tool in the seafood industry. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01269-2.
Collapse
Affiliation(s)
- Ga-Young Lee
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
3
|
Yizhen Z, Chen L, Jie X, Shen F, Zhang L, Hou Y, Li L, Yan G, Zhang X, Yang Z. Comparative study of the digestion and metabolism related genes' expression changes during the postnatal food change in different dietary mammals. Front Genet 2023; 14:1198977. [PMID: 37470038 PMCID: PMC10352678 DOI: 10.3389/fgene.2023.1198977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
The changes in the expression of genes related to digestion and metabolism may be various in different dietary mammals from juvenile to adult, especially, the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), which were once carnivores but have shifted to being specialized bamboo eaters, are unique features of their changes are more unclear. To elucidate the changing patterns of gene expression related to digestion and metabolism from juvenile to adult in different dietary mammals, we performed transcriptome analysis of the liver or pancreas in giant and red pandas, herbivorous rabbits (Oryctolagus cuniculus) and macaques (Macaca mulatta), carnivorous ferrets (Mustela putorius furo), and omnivorous mice (Mus musculus) from juvenile to adult. During the transition from juvenile to adulthood, giant and red pandas, as well as rabbits and macaques, show significant upregulation of key genes for carbohydrate metabolism, such as starch hydrolysis and sucrose metabolism, and unsaturated fatty acid metabolism, such as linoleic acid, while there is no significant difference in the expression of key genes for fatty acid β-oxidation. A large number of amino acid metabolism related genes were upregulated in adult rabbits and macaques compared to juveniles. While adult giant and red pandas mainly showed upregulation of key genes for arginine synthesis and downregulation of key genes for arginine and lysine degradation. In adult stages, mouse had significantly higher expression patterns in key genes for starch hydrolysis and sucrose metabolism, as well as lipid and protein metabolism. In contrast to general expectations, genes related to lipid, amino acid and protein metabolism were significantly higher expressed in adult group of ferrets, which may be related to their high metabolic levels. Our study elucidates the pattern of changes in the expression of genes related to digestion and metabolism from juvenile to adult in different dietary mammals, with giant and red pandas showing adaptations associated with specific nutritional limitations of bamboo.
Collapse
Affiliation(s)
| | - Lei Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodie Jie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yusen Hou
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoqiang Yan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | | |
Collapse
|
4
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Simarani K, Johan MR. Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1458-1472. [PMID: 36570614 PMCID: PMC9749552 DOI: 10.3762/bjnano.13.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The Southeast Asian box turtle, Cuora amboinensis, is an ecologically important endangered species which needs an onsite monitoring device to protect it from extinction. An electrochemical DNA biosensor was developed to detect the C. amboinensis mitochondrial cytochrome b gene based on an in silico designed probe using bioinformatics tools, and it was also validated in wet-lab experiments. As a detection platform, a screen-printed carbon electrode (SPCE) enhanced with a nanocomposite containing gold nanoparticles and graphene was used. The morphology of the nanoparticles was analysed by field-emission scanning electron microscopy and structural characteristics were analysed by using energy-dispersive X-ray, UV-vis, and Fourier-transform infrared spectroscopy. The electrochemical characteristics of the modified electrodes were studied by cyclic voltammetry, differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy. The thiol-modified synthetic DNA probe was immobilised on modified SPCEs to facilitate hybridisation with the reverse complementary DNA. The turtle DNA was distinguished based on hybridisation-induced electrochemical change in the presence of methylene blue compared to their mismatches, noncomplementary, and nontarget species DNA measured by DPV. The developed biosensor exhibited a selective response towards reverse complementary DNAs and was able to discriminate turtles from other species. The modified electrode displayed good linearity for reverse complementary DNAs in the range of 1 × 10-11-5 × 10-6 M with a limit of detection of 0.85 × 10-12 M. This indicates that the proposed biosensor has the potential to be applied for the detection of real turtle species.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Multiplex PCR Assay for Simultaneous Identification of Five Types of Tuna (Katsuwonus pelamis, Thunnus alalonga, T. albacares, T. obesus and T. thynnus). Foods 2022; 11:foods11030280. [PMID: 35159432 PMCID: PMC8834044 DOI: 10.3390/foods11030280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
There is a need to identify the species of similar types of fish, especially those that are commercially sold. Particularly, the price of tuna varies depending on its type, which is difficult to determine as they are sold in cut or processed forms. This study developed a multiplex polymerase chain reaction (PCR) assay to identify the five most common tuna species: bigeye, skipjack, Atlantic bluefin, albacore, and yellowfin tunas. Newly designed species-specific primer sets for these five tuna species were created. Subsequently, the amplicon sizes obtained were 270, 238, 200, 178, and 127 base pairs for bigeye, skipjack, Atlantic bluefin, albacore, and yellowfin tunas, respectively. Each primer’s specificity was further tested using 15 other fish species, and no cross-reactivity was observed. To identify multiple targets in a single reaction, multiplex PCR was optimized to increase its resolution and accuracy. The detection levels of the multiplex PCR assay were confirmed to be 1 pg for all the five tunas. Additionally, it was successfully applied to 32 types of commercial tuna products. Therefore, this multiplex PCR assay could be an efficient identification method for various tuna species.
Collapse
|
6
|
Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ. DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations. Mol Cell Probes 2021; 59:101758. [PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Healthcare Pharmaceuticals Ltd., Rajendrapur, Gazipur, Bangladesh
| | - Abu Hashem
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Amit R Nath
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, China
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wageeh A Yehye
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemistry, Universiti Malaya, Malaysia
| |
Collapse
|
7
|
Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1273-1288. [PMID: 34077338 DOI: 10.1080/19440049.2021.1925748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
Collapse
Affiliation(s)
- Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 2020; 62:285-310. [DOI: 10.1080/10408398.2020.1814691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmin Sultana
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Hossain MAM, Uddin SMK, Sultana S, Bonny SQ, Khan MF, Chowdhury ZZ, Johan MR, Ali ME. Heptaplex Polymerase Chain Reaction Assay for the Simultaneous Detection of Beef, Buffalo, Chicken, Cat, Dog, Pork, and Fish in Raw and Heat-Treated Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8268-8278. [PMID: 31283221 DOI: 10.1021/acs.jafc.9b02518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Species authentication of meat and fish products is crucial to safeguard public health, economic investment, and religious sanctity. We developed a heptaplex polymerase chain reaction assay targeting short amplicon length (73-198 bp) for the simultaneous detection and differentiation of cow, buffalo, chicken, cat, dog, pig, and fish species in raw and processed food using species-specific primers targeting mitochondrial cytb, ND5, and 16s rRNA genes. Assay validation of adulterated and various heat-treated meatball matrices showed excellent stability and sensitivity under all processing conditions. The detection limit was 0.01-0.001 ng of DNA under pure states and 0.5% meat in meatball products. Buffalo was detected in 86.7% (13 out of 15) of tested commercial beef products, while chicken, pork, and fish products were found to be pure. The developed assay was efficient enough to detect target species simultaneously, even in highly degraded and processed food products at reduced time.
Collapse
|
10
|
Balakrishna K, Sreerohini S, Parida M. Ready-to-use single tube quadruplex PCR for differential identification of mutton, chicken, pork and beef in processed meat samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1435-1444. [DOI: 10.1080/19440049.2019.1633477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Konduru Balakrishna
- Division of Food Microbiology, Defence Food Research Laboratory, Mysore, India
| | - Sagi Sreerohini
- Division of Food Microbiology, Defence Food Research Laboratory, Mysore, India
| | - Manmohan Parida
- Division of Food Microbiology, Defence Food Research Laboratory, Mysore, India
| |
Collapse
|
11
|
Tetraplex real-time PCR with TaqMan probes for discriminatory detection of cat, rabbit, rat and squirrel DNA in food products. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. Review of Recent DNA-Based Methods for Main Food-Authentication Topics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3854-3864. [PMID: 30901215 DOI: 10.1021/acs.jafc.8b07016] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adulteration and mislabeling of food products and the commercial fraud derived, either intentionally or not, is a global source of economic fraud to consumers but also to all stakeholders involved in food production and distribution. Legislation has been enforced all over the world aimed at guaranteeing the authenticity of the food products all along the distribution chain, thereby avoiding food fraud and adulteration. Accordingly, there is a growing need for new analytical methods able to verify that all the ingredients included in a foodstuff match the qualities claimed by the manufacturer or distributor. In this sense, the improved performance of most recent DNA-based tools in term of sensitivity, multiplexing ability, high-throughput, and relatively low-cost give them a game-changing role in food-authenticity-related topics. Here, we provide a thorough and updated vision on the recently reported approaches that are applying these DNA-based tools to assess the authenticity of food components and products.
Collapse
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Ignacio Ortea
- Proteomics Unit , Maimonides Institute for Biomedical Research (IMIBIC) , E-14004 Córdoba , Spain
| |
Collapse
|
13
|
Hossain MAM, Uddin SMK, Chowdhury ZZ, Sultana S, Johan MR, Rohman A, Erwanto Y, Ali ME. Universal mitochondrial 16s rRNA biomarker for mini-barcode to identify fish species in Malaysian fish products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:493-506. [PMID: 30865559 DOI: 10.1080/19440049.2019.1580389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mislabelling in fish products is a highly significant emerging issue in world fish trade in terms of health and economic concerns. DNA barcoding is an efficient sequencing-based tool for detecting fish species substitution but due to DNA degradation, it is in many cases difficult to amplify PCR products of the full-length barcode marker (~650 bp), especially in severely processed products. In the present study, a pair of universal primers targeting a 198 bp sequence of the mitochondrial 16s rRNA gene was designed for identification of fish species in the processed fish products commonly consumed in Malaysia. The specificity of the universal primers was tested by both in-silico studies using bioinformatics software and through cross-reaction assessment by practical PCR experiments against the DNA from 38 fish species and 22 other non-target species (animals and plants) and found to be specific for all the tested fish species. To eliminate the possibility of any false-negative detection, eukaryotic endogenous control was used during specificity evaluation. The developed primer set was validated with various heat-treated (boiled, autoclaved and microwaved) fish samples and was found to show high stability under all processing conditions. The newly developed marker successfully identified 92% of the tested commercial fish products with 96-100% sequence similarities. This study reveals a considerable degree of species mislabelling (20.8%); 5 out of 24 fish products were found to be mislabelled. The new marker developed in this work is a reliable tool to identify fish species even in highly processed products and might be useful in detecting fish species substitution thus protecting consumers' health and economic interests.
Collapse
Affiliation(s)
- M A Motalib Hossain
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Syed Muhammad Kamal Uddin
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Zaira Zaman Chowdhury
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharmin Sultana
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Mohd Rafie Johan
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia
| | - Abdul Rohman
- b Faculty of Pharmacy , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Yuny Erwanto
- c Department of Animal Products Technology, Faculty of Animal Science , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Md Eaqub Ali
- a Nanotechnology and Catalysis Research Center, Institute of Graduate Studies , University of Malaya , Kuala Lumpur , Malaysia.,d Centre for Research in Biotechnology for Agriculture , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
14
|
Ahmad Nizar NN, Sultana S, Hossain MM, Johan MR, Ali ME. Double gene targeting multiplex PCR-RFLP detects Crocodylus porosus in chicken meatball and traditional medicine. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1508164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nina Naquiah Ahmad Nizar
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmin Sultana
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M.A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Halal Research Centre (UMHRC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Sultana S, Hossain MM, Naquiah NNA, Ali ME. Novel multiplex PCR-RFLP assay discriminates bovine, porcine and fish gelatin substitution in Asian pharmaceuticals capsule shells. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1662-1673. [DOI: 10.1080/19440049.2018.1500719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sharmin Sultana
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, KualaLumpur, Malaysia
| | - M.A Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, KualaLumpur, Malaysia
| | - Nina Nizar Ahmad Naquiah
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, KualaLumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, KualaLumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Institute of Halal Products Research, Universiti Putra Malaysiax, University of Malaya, Selangor, Malaysia
| |
Collapse
|
16
|
Multiplex PCR to discriminate bovine, porcine, and fish DNA in gelatin and confectionery products. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Ahmad Nizar NN, Ali ME, Hossain MAM, Sultana S, Ahamad MNU. Double gene targeting PCR assay for the detection of Crocodylus porosus in commercial products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1038-1051. [PMID: 29447579 DOI: 10.1080/19440049.2018.1440644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The demand for crocodile meat is quickly growing because of its exotic and organoleptic appeal and also the low content of cholesterol and lipids. Moreover, crocodile oil and blood have been used in alternative medicines for treating asthma and several other ailments since ancient times. Furthermore, crocodile hides have great demand in leather industries. All of these have collectively contributed to the extensive hunting, illegal trading and consequent decline of crocodiles in most parts of the world. To keep space with the growing demands, some crocodile species such as Crocodylus porosus have been raised in farms and its commercial trades have been legalised. However, demand for wild crocodiles in foods and medicines has continued in high gear. Recently, several DNA-based methods have been proposed for crocodile detection, but those assays are based on single gene and longer-sized amplicon targets that break down during extensive processing. To address this gap, here we developed and validated a highly stable double gene targeted multiplex PCR assay for the identification of C. porosus materials in commercial products. The assay involved two short sites from C. porosus atp6 (77 bp) and cytb (127 bp) genes and a universal internal control (99 bp) for eukaryotes. The PCR primers were cross-tested against 18 species and validated under pure and mixed matrices under extensive boiling, autoclaving and microwave cooking conditions. Finally, it was used to identify five crocodile-based commercial products. The lower limits of detection for atp6 and cytb genes were 0.001 ng and 0.01 ng DNA, respectively, in pure meat and 1% under mixed matrices. Some inherent features, such as 77-127 bp amplicon sizes, exceptional stability and superior sensitivity, suggested the assay could be used for the identification of C. porosus in any forensic specimen.
Collapse
Affiliation(s)
- Nina Naquiah Ahmad Nizar
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Md Eaqub Ali
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia.,b Centre for Research in Biotechnology for Agriculture (CEBAR) , University of Malaya , Kuala Lumpur , Malaysia.,c Institute of Halal Research (IHRUM) , University of Malaya , Kuala Lumpur , Malaysia
| | - M A Motalib Hossain
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharmin Sultana
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | | |
Collapse
|