1
|
Campolina GA, Cardoso MDG, Freire CS, Caetano ARS, Campos ABDS, Ferreira VRF, Alves E, Nelson DL, Batista LR. Essential oils from Cuminum cyminum and Laurus nobilis and their principal constituents: evaluation of antifungal and antimycotoxigenic potential in Aspergillus species. FEMS Microbiol Lett 2024; 371:fnae081. [PMID: 39363191 DOI: 10.1093/femsle/fnae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/18/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
The antifungal and antimycotoxigenic activities of the essential oils (EO) from Cuminum cyminum and Laurus nobilis, and their respective principal compounds, cuminaldehyde and 1,8-cineole, were evaluated against fungi of the genus Aspergillus: A. carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. The antifungal activity was determined by the contact method and the mycelial growth of the fungi was evaluated. Scanning electron microscopic (SEM) images were obtained to suggest modes of action of the compounds analysed. The antimycotoxigenic activity was determined by high-performance liquid chromatograph. Aspergillus carbonarius was completely inhibited by cumin EO (500 µl l-1), by laurel EO and by cuminaldehyde (5000 µl l-1). The cumin EO (500 µl l-1) completely inhibited the growth of A. niger. All the samples inhibited the mycelial growth of A. ochraceus, especially cumin EO and cuminaldehyde (250 µl l-1). Aspergillus westerdijkiae was completely inhibited by cumin EO and cuminaldehyde (1000 µl l-1), by laurel EO and 1,8-cineole (10 000 µl l-1). A decrease in the production of ochratoxin A (OTA) was observed post-treatment, except in A. ochraceus, only inhibited by laurel EO. SEM images showed morphological changes in fungal structures and spore inhibition post-treatment. The results confirmed the antifungal and antimycotoxigenic effect of EO and their principal constituents on fungi evaluated.
Collapse
Affiliation(s)
- Gabriela Aguiar Campolina
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Maria das Graças Cardoso
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Carolina Salles Freire
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | | | | | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Luis Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| |
Collapse
|
2
|
Yang X, Deng P, Liu Q, Meng Y, Dong P, Xu L, Huang L. Exploring the efficacy of carvacrol as a biocontrol agent against pear Valsa canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105641. [PMID: 37945237 DOI: 10.1016/j.pestbp.2023.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Valsa canker, a fungal disease caused by Valsa pyri, poses a significant threat to the pear industry. Currently, chemical control serves as the primary method to control valsa canker. However, the emergence of resistance can pose a challenge to its effectiveness. Biopesticides are a relatively new option for disease control, but there is limited research on their effects on pear Valsa canker. To determine the effectiveness of different biopesticides, we selected 10 common biopesticides to test their inhibition efficacy and impacts on mycelial growth rate and conidial germination. Results showed that carvacrol had very good antifungal activity; therefore its inhibition mechanisms were further investigated. Electron microscopy and transcriptome data analysis were utilized to examine how carvacrol impeded V. pyri by inducing mycelium deformation, wrinkling, and rupture. Carvacrol also affected plant hormones, thus improving plant resistance to the disease. This study lays the groundwork for the utilization of 10 distinct biopesticides to control V. pyri while elucidating how carvacrol harms the pathogen and prompts the plant defense control mechanism.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pujiang Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiuyue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengpeng Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
4
|
Delgado J, Álvarez M, Cebrián E, Martín I, Roncero E, Rodríguez M. Biocontrol of Pathogen Microorganisms in Ripened Foods of Animal Origin. Microorganisms 2023; 11:1578. [PMID: 37375080 PMCID: PMC10301060 DOI: 10.3390/microorganisms11061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ripened foods of animal origin comprise meat products and dairy products, being transformed by the wild microbiota which populates the raw materials, generating highly appreciated products over the world. Together with this beneficial microbiota, both pathogenic and toxigenic microorganisms such as Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Clostridium botulinum, Escherichia coli, Candida spp., Penicillium spp. and Aspergillus spp., can contaminate these products and pose a risk for the consumers. Thus, effective strategies to hamper these hazards are required. Additionally, consumer demand for clean label products is increasing. Therefore, the manufacturing sector is seeking new efficient, natural, low-environmental impact and easy to apply strategies to counteract these microorganisms. This review gathers different approaches to maximize food safety and discusses the possibility of their being applied or the necessity of new evidence, mainly for validation in the manufacturing product and its sensory impact, before being implemented as preventative measures in the Hazard Analysis and Critical Control Point programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Mar Rodríguez
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain; (J.D.); (M.Á.); (E.C.); (I.M.); (E.R.)
| |
Collapse
|
5
|
Pinto LDA, Machado FP, Esteves R, Farias VM, Köptcke FBN, Ricci-Junior E, Rocha L, Keller LAM. Characterization and Inhibitory Effects of Essential Oil and Nanoemulsion from Ocotea indecora (Shott) Mez in Aspergillus Species. Molecules 2023; 28:molecules28083437. [PMID: 37110671 PMCID: PMC10142328 DOI: 10.3390/molecules28083437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The Aspergillus genus, the etiological agent of aspergillosis, is an important food contaminant and mycotoxin producer. Plant extracts and essential oils are a source of bioactive substances with antimicrobial potential that can be used instead of synthetic food preservatives. Species from the Lauraceae family and the Ocotea genus have been used as traditional medicinal herbs. Their essential oils can be nanoemulsified to enhance their stability and bioavailability and increase their use. Therefore, this study sought to prepare and characterize both nanoemulsion and essential oil from the Ocotea indecora's leaves, a native and endemic species from the Mata Atlântica forest in Brazil, and evaluate the activity against Aspergillus flavus RC 2054, Aspergillus parasiticus NRRL 2999, and Aspergillus westerdjikiae NRRL 3174. The products were added to Sabouraud Dextrose Agar at concentrations of 256, 512, 1024, 2048, and 4096 µg/mL. The strains were inoculated and incubated for up to 96 h with two daily measurements. The results did not show fungicidal activity under these conditions. A fungistatic effect, however, was observed. The nanoemulsion decreased the fungistatic concentration of the essential oil more than ten times, mainly in A. westerdjikiae. There were no significant changes in aflatoxin production.
Collapse
Affiliation(s)
- Leonardo de Assunção Pinto
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências em Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-590, Brazil
| | - Francisco Paiva Machado
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências em Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-590, Brazil
| | - Ricardo Esteves
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências em Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-590, Brazil
| | - Victor Moebus Farias
- Programa de Pós-Graduação em Higiene Veterinária e Processamento Tecnológico de Produtos de Origem Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24220-000, Brazil
| | | | - Eduardo Ricci-Junior
- Departamento de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil
| | - Leandro Rocha
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24241-000, Brazil
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24241-002, Brazil
| | - Luiz Antonio Moura Keller
- Departamento de Zootecnia e Desenvolvimento Agrosustentável, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24220-000, Brazil
| |
Collapse
|
6
|
Álvarez M, Andrade MJ, Delgado J, Núñez F, Román ÁC, Rodrigues P. Rosmarinus officinalis reduces the ochratoxin A production by Aspergillus westerdijkiae in a dry-cured fermented sausage-based medium. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Zhao L, Wang J, Zhang H, Wang P, Wang C, Zhou Y, Li H, Yu S, Wu R. Inhibitory effect of carvacrol against Alternaria alternata causing goji fruit rot by disrupting the integrity and composition of cell wall. Front Microbiol 2023; 14:1139749. [PMID: 36891390 PMCID: PMC9986456 DOI: 10.3389/fmicb.2023.1139749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Goji (Lycium barbarum L.) is a widely planted crop in China that is easily infected by the pathogenic fungus Alternaria alternata, which causes rot after harvest. Previous studies showed that carvacrol (CVR) significantly inhibited the mycelial growth of A. alternata in vitro and reduced Alternaria rot in goji fruits in vivo. The present study aimed to explore the antifungal mechanism of CVR against A. alternata. Optical microscopy and calcofluor white (CFW) fluorescence observations showed that CVR affected the cell wall of A. alternata. CVR treatment affected the integrity of the cell wall and the content of substances in the cell wall as measured by alkaline phosphatase (AKP) activity, Fourier transform-infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Chitin and β-1,3-glucan contents in cells decreased after CVR treatment, and the activities of β-glucan synthase and chitin synthase decreased. Transcriptome analysis revealed that CVR treatment affected cell wall-related genes in A. alternata, thereby affecting cell wall growth. Cell wall resistance also decreased with CVR treatment. Collectively, these results suggest that CVR may exert antifungal activity by interfering with cell wall construction, leading to impairment of cell wall permeability and integrity.
Collapse
Affiliation(s)
- Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Peng Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Cong Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yueli Zhou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Huanhuan Li
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Shukun Yu
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Rina Wu
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
8
|
In vitro and in vivo efficacy of poly(lactic acid) nanofiber packaging containing essential oils from Ocimum basilicum L. and Ocimum gratissimum L. against Aspergillus carbonarius and Aspergillus niger in table grapes. Food Chem 2023; 400:134087. [DOI: 10.1016/j.foodchem.2022.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
|
9
|
Álvarez M, Núñez F, Delgado J, Andrade MJ, Rodrigues P. Proteomic evaluation of the effect of antifungal agents on aspergillus westerdijkiae ochratoxin A production in a dry-cured fermented sausage-based medium. Int J Food Microbiol 2022; 379:109858. [DOI: 10.1016/j.ijfoodmicro.2022.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
10
|
Jiang N, Wang L, Jiang D, Wang M, Liu H, Yu H, Yao W. Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Jafarzadeh S, Abdolmalek K, Javanmardi F, Hadidi M, Mousavi Khaneghah A. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup WA 6027 Australia
| | - Khadije Abdolmalek
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Hadidi
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
12
|
Ganesan AR, Mohan K, Karthick Rajan D, Pillay AA, Palanisami T, Sathishkumar P, Conterno L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 2021; 378:131978. [PMID: 35033712 DOI: 10.1016/j.foodchem.2021.131978] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering Science and Technology, Fiji National University, Nabua Campus- 7222, Fiji Islands
| | - Thavamani Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Palanivel Sathishkumar
- Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Lorenza Conterno
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| |
Collapse
|
13
|
Cai J, Yan R, Shi J, Chen J, Long M, Wu W, Kuca K. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytother Res 2021; 36:62-72. [PMID: 34528300 DOI: 10.1002/ptr.7281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
With increased popular awareness of food safety and environmental protection, plant essential oil has attracted interest due to the absence of residue, its high efficiency, antioxidant, immune regulation, antibacterial, insecticidal, and other advantages. Their application in degradation and elimination of mycotoxin toxicity has attracted increasing attention. This paper reviews the structure, antibacterial activity, antibacterial mechanism, and toxic effects of essential oils. The inhibitory effects of various essential oils on different mycotoxins were studied. The research progress on the inhibitory effects of plant essential oils on fungi and mycotoxins in recent years was summarized to provide reference for the application of plant essential oils.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichao Shi
- Liaoning Service Development Center, Shenyang, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Mirza Alizadeh A, Golzan SA, Mahdavi A, Dakhili S, Torki Z, Hosseini H. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Crit Rev Food Sci Nutr 2021; 62:4726-4751. [PMID: 33523705 DOI: 10.1080/10408398.2021.1878102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Essential oils, as extracted compounds from plants, are volatile and aromatic liquids which their unique aromatic compounds give each essential oil its distinctive essence. Fungi toxins can induce various adverse health effects like allergy, cancer, and immunosuppression. Moreover, fungal spoilage impacts pharmaceutical and food industries economic state. A drop in the utilization of synthetic compounds as food prophylaxis has occurred due to several factors such as hygiene agents' alerts and stricter legal regulations. Therefore, the applications of natural substances such as essential oils have increased in recent years. Oregano, cinnamon, thyme, rosemary, fennel, clove, palmarosa, and eucalyptus have been the highest employed essential oils against mycotoxigenic fungi and their mycotoxins in studies conducted in the past decade. Essential oils inhibit fungi growth and mycotoxin synthesis via diverse pathways including modified fungal growth rate and extended lag phase, disruption of cell permeability, disruption of the electron transport chain and manipulating gene expression patterns and metabolic processes. In the present review, we will investigate the implications and efficacy of essential oils in preventing the growth of mycotoxigenic fungi, eliminating mycotoxins and their mechanism of actions conducted in the last decade. HighlightsThe most investigated toxigenic genera are Aspergillus, Fusarium and Penicillium Spp.AB1, AG1, OTA and AB2 are the most frequently studied toxinsOregano, cinnamon and thyme are mostly exploited EOs on toxigenic fungi & mycotoxinsOregano, thyme & cinnamon are the most significant antifungals on toxigenic generaCinnamon, oregano & cinnamaldehyde are the fittest antimycotoxins on DON, OTA & AFB1.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Mahdavi
- Department of Food Science and Technology, Takestan Branch, Islamic Azad University, Qazvin, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Torki
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|