1
|
Oyebade Ikusika O, Haruzivi C, Conference Mpendulo T. Alternatives to the Use of Antibiotics in Animal Production. Vet Med Sci 2022. [DOI: 10.5772/intechopen.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a growing demand for livestock products and by-products due to an increase in the human population globally. Farmers utilize feed additives and antibiotics to enhance growth and alleviate diseases to meet this increasing demand for meat and meat products. Although antibiotic use as growth promoters (AGPs) in the livestock industry has brought about a positive increase in production, the industry has also been negatively affected by the development of bacteria resistant to antibiotics and the presence of chemical residues in meat and excreta. Due to this, concerns have risen as this poses a health risk. Resistant bacteria can be transmitted to humans by consuming meat from antibiotic-fed animals or environmental spread from animal wastes. Therefore, action is required to curb this issue because it is estimated that the annual losses in GDP and death toll globally could increase because of the continuous use of antibiotics in livestock production. Hence, this review aims to examine natural alternatives that have the potential to replace antibiotics for food safety, health, and environmental reasons. These could bring a satisfactory impact on nutrient absorption for growth together with health-stimulating virtues.
Collapse
|
2
|
Mantovani A, Aquilina G, Cubadda F, Marcon F. Risk-Benefit Assessment of Feed Additives in the One Health Perspective. Front Nutr 2022; 9:843124. [PMID: 35223963 PMCID: PMC8866873 DOI: 10.3389/fnut.2022.843124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Safety and sustainability of animal feeds is a pillar of the safety of the entire food chain. Feed additive assessment incorporates consumer safety as well as animal health and welfare, which, in turn, can affect productivity and hence food security. The safety of feed users and the environment are other important components of the assessment process which, therefore, builds on a One Health perspective. In several instances the assessment entails a balanced assessment of benefits and risks for humans, animals and/or the environment. Three case studies are selected to discuss issues for a consistent framework on Risk-Benefit Assessment (RBA) of feed additives, based on EFSA opinions and literature: (a) Supplementation of feeds with trace elements with recognized human toxicity (cobalt, iodine) - RBA question: can use levels, hence human exposure, be reduced without increasing the risk of deficiency in animals?; (b) Aflatoxin binders in dairy animals - RBA question: can the use reduce the risk for human health due to aflatoxin M1, without unexpected adverse effects for animals or humans?; (c) Use of formaldehyde as preservative in feedstuffs to prevent microbial contamination - RBA question: is the reduction of microbiological risks outweighed by risks for the consumers, farmed animals or the workers? The case studies indicate that the safety of use of feed additives can involve RBA considerations which fit into a One Health perspective. As in other RBA circumstances, the main issues are defining the question and finding "metrics" that allow a R/B comparison; in the case of feed additives, R and B may concern different species (farm animals and humans). A robust assessment of animal requirements, together with sustainability considerations, might be a significant driving force for a RBA leading to a safe and effective use.
Collapse
Affiliation(s)
| | | | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Rome, Italy
| | | |
Collapse
|
3
|
Wang C, Dong S, Wang P, Hao Y, Wang R, Zhang S, Wang Y, Fan M, Zhang Q, Jiang G. Reevaluation on accumulation and depletion of dioxin-like compounds in eggs of laying hens: Quantification on dietary risk from feed to egg. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149690. [PMID: 34419913 DOI: 10.1016/j.scitotenv.2021.149690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Updated assessment on transfer of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) from feed to food is essential for understanding human exposure risk. A controlled feeding experiment was conducted for laying hens to reevaluate the transfer characteristics of dioxin-like compounds from feed to egg. Two fortified diets (1.17 and 5.13 pg TEQ g-1 dry weight), made by blending with fly ash, were fed to laying hens for 14 days, followed by 28-days depletion. Levels of ∑TEQPCDD/Fs+DL-PCBs in eggs rapidly increased once exposure started, reaching at 1.98 and 6.86 pg TEQ g-1 lw at the end of exposure for low- and high-exposure groups, respectively, and dropped to under the European legislation (maximum levels: 5.0 pg TEQ g-1 lw) after 28-days depletion. The quantitative depletions showed that the half-lives (T1/2) of ∑TEQPCDD/Fs in eggs were 23 and 14 days for low- and high-exposure groups, respectively. The depletion and accumulation rates of PCDD/Fs were in the range of 0.026-0.151 and 0.005-0.016 day-1, respectively, representing that the T1/2 of PCDD/Fs in eggs ranged from 5 to 27 days. The depletion kinetics of DL-PCBs was not significant in egg. The hens with higher laying rates exhibited shorter T1/2 of PCDD/Fs, implying that increasing laying rate could expedite the depletion of PCDD/Fs in egg. The T1/2 of PCDD/Fs in egg were negatively correlated with the chlorine number, indicating that lower chlorinated congeners tended to be retained in the egg. Transfer rates of PCDD/Fs were in the range of 4-19%, which were lower than the previous results. These results were attributed to short exposure time and low bioavailability of PCDD/Fs in fly ash. Estimations of dietary intake highlighted the dietary risk of PCDD/Fs from feed to egg, which would pose limited adverse effects on human health.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxin Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengdie Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Lima-Oliveira G, Brennan-Bourdon LM, Varela B, Arredondo ME, Aranda E, Flores S, Ochoa P. Clot activators and anticoagulant additives for blood collection. A critical review on behalf of COLABIOCLI WG-PRE-LATAM. Crit Rev Clin Lab Sci 2020; 58:207-224. [PMID: 33929278 DOI: 10.1080/10408363.2020.1849008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the clinical laboratory, knowledge of and the correct use of clot activators and anticoagulant additives are critical to preserve and maintain samples in optimal conditions prior to analysis. In 2017, the Latin America Confederation of Clinical Biochemistry (COLABIOCLI) commissioned the Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM) to study preanalytical variability and establish guidelines for preanalytical procedures to be applied by clinical laboratories and health care professionals. The aim of this critical review, on behalf of COLABIOCLI WG-PRE-LATAM, is to provide information to understand the mechanisms of the interactions and reactions that occur between blood and clot activators and anticoagulant additives inside evacuated tubes used for laboratory testing. Clot activators - glass, silica, kaolin, bentonite, and diatomaceous earth - work by surface dependent mechanism whereas extrinsic biomolecules - thrombin, snake venoms, ellagic acid, and thromboplastin - start in vitro coagulation when added to blood. Few manufacturers of evacuated tubes state the type and concentration of clot activators used in their products. With respect to anticoagulant additives, sodium citrate and oxalate complex free calcium and ethylenediaminetetraacetic acid chelates calcium. Heparin potentiates antithrombin and hirudin binds to active thrombin, inactivating the thrombin irreversibly. Blood collection tubes have improved continually over the years, from the glass tubes containing clot activators or anticoagulant additives that were prepared by laboratory personnel to the current standardized evacuated systems that permit more precise blood/additive ratios. Each clot activator and anticoagulant additive demonstrates specific functionality, and both manufacturers of tubes and laboratory professional strive to provide suitable interference-free sample matrices for laboratory testing. Both manufacturers of in vitro diagnostic devices and laboratory professionals need to understand all aspects of venous blood sampling so that they do not underestimate the impact of tube additives on laboratory testing.
Collapse
Affiliation(s)
- G Lima-Oliveira
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - L M Brennan-Bourdon
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Comisión Para la Protección Contra Riesgos Sanitarios del Estado de Jalisco (COPRISJAL), Secretaria de Salud, Guadalajara, México
| | - B Varela
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Quality Assurance, LAC, Montevideo, Uruguay
| | - M E Arredondo
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Management Area, Clinical Laboratory, BIONET S.A, Santiago, Chile
| | - E Aranda
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Laboratory of Thrombosis and Hemostasis, Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Flores
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Clinical Laboratory, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - P Ochoa
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Facultad de Medicina, Universidad Católica de Cuenca, Cuenca, Ecuador
| |
Collapse
|