1
|
Ciaccheri L, De Girolamo A, Cervellieri S, Lippolis V, Mencaglia AA, Pascale M, Mignani AG. Low-Cost Pocket Fluorometer and Chemometric Tools for Green and Rapid Screening of Deoxynivalenol in Durum Wheat Bran. Molecules 2023; 28:7808. [PMID: 38067538 PMCID: PMC10708224 DOI: 10.3390/molecules28237808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contamination is crucial for ensuring safety and quality of food and feed products, for preventing health risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two samples with DON contamination in the 40-1650 µg/kg range were considered. A chemometric processing of spectroscopic data allowed distinguishing of samples based on their DON content using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying further inspection by means of more accurate but also more expensive standard analytical techniques. Chemometric data processing using Principal Component Analysis and Quadratic Discriminant Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge, this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.
Collapse
Affiliation(s)
- Leonardo Ciaccheri
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Annalisa De Girolamo
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Salvatore Cervellieri
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Vincenzo Lippolis
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Andrea Azelio Mencaglia
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Michelangelo Pascale
- CNR—Istituto di Scienze dell’Alimentazione (ISA), Via Roma, 64, 83100 Avellino, Italy;
| | - Anna Grazia Mignani
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| |
Collapse
|
2
|
Vardali S, Papadouli C, Rigos G, Nengas I, Panagiotaki P, Golomazou E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023; 28:2519. [PMID: 36985489 PMCID: PMC10053411 DOI: 10.3390/molecules28062519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.
Collapse
Affiliation(s)
- Sofia Vardali
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christina Papadouli
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Ioannis Nengas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Golomazou
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
3
|
Martínez-Martín I, Hernández-Jiménez M, Revilla I, Vivar-Quintana AM. Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:1491. [PMID: 36772530 PMCID: PMC9920201 DOI: 10.3390/s23031491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Lentil flour is an important source of minerals, including iron, so its use in food fortification programs is becoming increasingly important. In this study, the potential of near infrared technology to discriminate the presence of lentil flour in fortified wheat flours and the quantification of their mineral composition is evaluated. Three varieties of lentils (Castellana, Pardina and Guareña) were used to produce flours, and a total of 153 samples of wheat flours fortified with them have been analyzed. The results show that it is possible to discriminate fortified flours with 100% efficiency according to their lentil flour content and to discriminate them according to the variety of lentil flour used. Regarding their mineral composition, the models developed have shown that it is possible to predict the Ca, Mg, Fe, K and P content in fortified flours using near infrared spectroscopy. Moreover, these models can be applied to unknown samples with results comparable to ICP-MS determination of these minerals.
Collapse
|
4
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Determination of aflatoxin B1 value in corn based on Fourier transform near-infrared spectroscopy: Comparison of optimization effect of characteristic wavelengths. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins (Basel) 2022; 14:toxins14050323. [PMID: 35622570 PMCID: PMC9146547 DOI: 10.3390/toxins14050323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Mycotoxins should be monitored in order to properly evaluate corn silage safety quality. In the present study, corn silage samples (n = 115) were collected in a survey, characterized for concentrations of mycotoxins, and scanned by a NIR spectrometer. Random Forest classification models for NIR calibration were developed by applying different cut-offs to classify samples for concentration (i.e., μg/kg dry matter) or count (i.e., n) of (i) total detectable mycotoxins; (ii) regulated and emerging Fusarium toxins; (iii) emerging Fusarium toxins; (iv) Fumonisins and their metabolites; and (v) Penicillium toxins. An over- and under-sampling re-balancing technique was applied and performed 100 times. The best predictive model for total sum and count (i.e., accuracy mean ± standard deviation) was obtained by applying cut-offs of 10,000 µg/kg DM (i.e., 96.0 ± 2.7%) or 34 (i.e., 97.1 ± 1.8%), respectively. Regulated and emerging Fusarium mycotoxins achieved accuracies slightly less than 90%. For the Penicillium mycotoxin contamination category, an accuracy of 95.1 ± 2.8% was obtained by using a cut-off limit of 350 µg/kg DM as a total sum or 98.6 ± 1.3% for a cut-off limit of five as mycotoxin count. In conclusion, this work was a preliminary study to discriminate corn silage for high or low mycotoxin contamination by using NIR spectroscopy.
Collapse
|
7
|
Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Curr Res Food Sci 2022; 5:1305-1312. [PMID: 36065198 PMCID: PMC9440252 DOI: 10.1016/j.crfs.2022.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
The quality and safety of wheat flour are of public concern since they are related to the quality of flour products and human health. Therefore, efficient and convenient analytical techniques are needed for the quality and safety controls of wheat flour. Near-infrared (NIR) spectroscopy has become an ideal technique for assessing the quality and safety of wheat flour, as it is a rapid, efficient and nondestructive method. The application of NIR spectroscopy in the quality and safety analysis of wheat flour is addressed in this review. First, we briefly summarize the basic knowledge of NIR spectroscopy and chemometrics. Then, recent advances in the application of NIR spectroscopy for chemical composition, technological parameters, and safety analysis are presented. Finally, the potential of NIR spectroscopy is discussed. Combined with chemometric methods, NIR spectroscopy has been used to detect chemical composition, technological parameters, deoxynivalenol, adulterants and additives of wheat flour. Furthermore, NIR spectroscopy has shown great potential for the rapid and online analysis of the quality and safety of wheat flour. It is anticipated that the current review will serve as a reference for the future analysis of wheat flour by NIR spectroscopy to ensure the quality and safety of flour products. NIR spectroscopy is an ideal technique for analysis of wheat flour due to its rapid and nondestructive nature. Use of NIR spectroscopy for chemical composition, technological parameters, and safety analysis. Online and handheld NIR spectrometers for wheat flour detection are the future trends.
Collapse
|