1
|
Bhandari NL, Bhandari G, Bist K, Adhikari D, Dhakal KN, Adhikari R, Lach R, Kim AA, Yoo DJ, Poudel MB. Comparative investigation of fillers loading effect on morphological, micromechanical, and thermal properties of polyvinyl alcohol/biofillers-based composites. Int J Biol Macromol 2024; 280:136192. [PMID: 39357722 DOI: 10.1016/j.ijbiomac.2024.136192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyvinyl alcohol (PVA)-based biocomposites were fabricated by the incorporation of chitosan (Ch), cellulose fibers (CS), and their mixture (1:1 ratio). Fillers with various loading (2, 4, 8, and 10 wt.-%) were incorporated into PVA employing the solution casting method. The fillers and biocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), brightfield microscopy, tensile and microindentation tests, contact angle measurement and thermogravimetric analysis (TGA). FTIR spectra revealed the removal of lignin, and intermolecular H-bonding between PVA and fillers promoting their filler-matrix interfacial interactions. Crystallographic results showed varied crystallite sizes and crystallinity of composites. Microscopic techniques revealed a uniform filler distribution, attributed to their compatibility with PVA. Tensile and microindentation tests demonstrated a decreased tensile strength (3.3-8.2 MPa of the composites compared to 15.7 MPa of the matrix) and Martens hardness (HM) of biocomposites. However, their value was increased with higher filler concentration, signifying the mechanical reinforcement. Contact angle analysis confirms the decreased wettability (hydrophilicity) of biocomposites, attributed to higher compatibility of fillers with PVA and intermolecular H-bonding between them. A slightly decreased thermal stability of biocomposites with filler incorporation is implied by TGA results despite their uniform distribution and strong matrix-filler interfacial interactions.
Collapse
Affiliation(s)
- Netra Lal Bhandari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Ganesh Bhandari
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Kabita Bist
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Deepjyoti Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kedar Nath Dhakal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Rameshwar Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ralf Lach
- Polymer Service GmbH Merseburg (PSM), Geusaer Straße 81f, 06217 Merseburg, Germany
| | - Allison A Kim
- Department of Healthcare Management, Woosung University, Daejon, Republic of Korea
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering, R&D Education Center for Specialized Graduate School of Hydrogen and Fuel Cells Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeollabuk-do 561-756, Republic of Korea
| | - Milan Babu Poudel
- Department of Energy Storage/Conversion Engineering, R&D Education Center for Specialized Graduate School of Hydrogen and Fuel Cells Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
2
|
Heravi M, Srivastava V, Ahmadpour A, Zeynali V, Sillanpää M. The effect of the number of SO 3- groups on the adsorption of anionic dyes by the synthesized hydroxyapatite/Mg-Al LDH nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17426-17447. [PMID: 38337120 DOI: 10.1007/s11356-024-32192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
In this study, a new nanocomposite of hydroxyapatite (HA)/Mg-Al layered double hydroxide (LDH) was successfully formed via a facile co-precipitation method and applied to adsorb three anionic dyes of alizarin red S (ARS), Congo red (CR), and reactive red 120 (RR120) differing in the number of SO3- groups from aqueous solution. Based on a combination of characterization analysis and adsorption experiments, HA/Mg-Al LDH nanocomposite showed better adsorption performance than HA and Mg-Al LDH. Using XRD and TEM analyses, the crystallinity and the presence of nanoparticles were confirmed. According to the SEM investigation, the Mg-Al LDH layers in the nanocomposite structure were delaminated, while HA nanorods were formed at the surface of Mg-Al LDH nanoparticles. The higher BET surface area of the novel HA/Mg-Al LDH nanocomposite compared to HA and Mg-Al LDH provided its superior adsorption performance. Considering an effective amount of adsorbent dosage, pH 5 was selected as the optimum pH for each of the three dye solutions. According to the results from the study of contact time and initial concentration, the pseudo-second-order kinetic (R2 = 0.9987, 0.9951, and 0.9922) and Langmuir isotherm (R2 = 0.9873, 0.9956, and 0.9727) best fitted the data for ARS, CR, and RR120, respectively. Anionic dyes with different numbers of SO3- groups demonstrated distinct adsorption mechanisms for HA and Mg-Al LDH nanoparticles, indicating that the adsorption capacity is influenced by the number of SO3- groups, with HA/Mg-Al LDH nanocomposite offering superior performance toward dyes with higher numbers of SO3- groups. Furthermore, ΔH° less than 40 kJ/mol, positive ΔS°, and negative ΔG° accompanied by the mechanism clarifying show physical spontaneous adsorption without an external source of energy and increase the randomness of the process during the adsorption, respectively. Finally, the regeneration study demonstrated that the nanocomposite could be utilized for multiple adsorption-desorption cycles, proposing the HA/Mg-Al LDH as an economically and environmentally friendly adsorbent in the adsorption of anionic dyes in water treatment processes.
Collapse
Affiliation(s)
- Maliheh Heravi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Varsha Srivastava
- Department Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, 90014, Oulu, Finland
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
- Industrial Catalysts/Adsorbents and Environment (ICAE) Lab, Oil and Gas Research Institute, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Vahid Zeynali
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Cai T, Chen H, Yao L, Peng H. 3D Hierarchical Porous and N-Doped Carbonized Microspheres Derived from Chitin for Remarkable Adsorption of Congo Red in Aqueous Solution. Int J Mol Sci 2022; 24:ijms24010684. [PMID: 36614127 PMCID: PMC9821205 DOI: 10.3390/ijms24010684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
A novel adsorbent of N-doped carbonized microspheres were developed from chitin (N-doped CM-chitin) for adsorption of Congo red (CR). The N-doped CM-chitin showed spherical shape and consisted of carbon nanofibers with 3D hierarchical architecture. There were many micro/nano-pores existing in N-doped CM-chitin with high surface area (455.703 m2 g-1). The N element was uniformly distributed on the carbon nanofibers and formed with oxidize-N graphitic-N, pyrrolic-N, and pyridinic-N. The N-doped CM-chitin showed excellent adsorption capability for CR and the maximum adsorption amount was approximate 954.47 mg g-1. The π-π/n-π interaction, hydrogen-bond interactions, and pore filling adsorption might be the adsorption mechanisms. The adsorption of N-doped CM-chitin was considered as a spontaneous endothermic adsorption process, and which well conformed to the pseudo-second-order kinetic and Langmuir isotherm model. The N-doped CM-chitin exhibited an effective adsorption performance for dynamic CR water with good reusability. Therefore, this work provides new insights into the fabrication of a novel N-doped adsorbent from low-cost and waste biomasses.
Collapse
Affiliation(s)
- Taimei Cai
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Huijie Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lihua Yao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hailong Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
4
|
Usman MA, Khan AY. Selective adsorption of anionic dye from wastewater using polyethyleneimine based macroporous sponge: Batch and continuous studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128238. [PMID: 35033911 DOI: 10.1016/j.jhazmat.2022.128238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Dyes are well known for their hazardous impacts on public health and the environment. Dye removal using monolithic adsorbents is an attractive approach for industrial applications and process design owing to their utilization in both static and dynamic adsorption experiments. In the present work, polyethyleneimine (PEI) based macroporous monolithic sponge (S100) was engineered by ice-templating method and used as an adsorbent. Both batch and continuous operations for dye removal were studied. The effect of various parameters such as pH, adsorbent amount, flow rate, influent dye concentration, and adsorbent bed height on adsorption performance of S100 was studied and modelled using Langmuir/Freundlich isotherms for static operations and Adam-Bohart/Thomas model in packed-bed column experiments. Under optimum conditions, the adsorbent showed a remarkably higher adsorption capacity towards CR (1666.67 mg/g), which is considerably higher than most PEI-based adsorbents. Amine groups in S100 offered exceptional selectivity for anionic Congo red (CR) against cationic Methylene blue (MB) dye (separation factor of 208 and 87 in absence and presence of sodium chloride, respectively). It can be easily regenerated in alkaline medium without a significant loss in percent adsorption capacity and shows good thermal and mechanical stability. Notably, in column studies, a relatively smaller percentage of unused bed height (32.3%) was observed with higher dye uptake for 16 mg S100 at flow rate 10 mL/h and inlet concentration 300 mg/L. Thus, the adsorbent displays an outstanding physiochemical characteristic, excellent selectivity for anionic dye, ease of regeneration and high adsorption performance in both batch and continuous studies.
Collapse
Affiliation(s)
- Mohd Arish Usman
- Department of Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India
| | - Anees Y Khan
- Department of Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmer Expressway, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
5
|
Doan CT, Tran TN, Wang CL, Wang SL. Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent. Polymers (Basel) 2020; 12:E2228. [PMID: 32998333 PMCID: PMC7601101 DOI: 10.3390/polym12102228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
As a green and effective technique in the production of a large number of valuable products, the microbial conversion of chitinous fishery wastes is receiving much attention. In this study, protease production using the Paenibacillus mucilaginosus TKU032 strain was conducted on culture media containing several common types of chitinous fishery by-products serving as the carbon and nitrogen (C/N) nutrition source. Among the chitinous wastes, 1.5% (w/v) shrimp head powder (SHP) was found to be the most appropriate nutritional source for protease production when a maximal enzyme activity of 3.14 ± 0.1 U/mL was observed on the 3rd day of the culture period. The molecular mass of P. mucilaginosus TKU032 protease was estimated to be nearly 32 kDa by the polyacrylamide gel electrophoresis method. The residual SHP obtained from the culture medium was also considered to be utilized for chitin extraction. The deproteinization rate of the fermentation was estimated to be 45%, and the chitin obtained from fermented SHP (fSHP) displayed a similar characteristic Fourier-transform infrared spectroscopy (FTIR) profile as that from SHP. In addition, SHP, fSHP, and chitins obtained from SHP and fSHP were investigated for their adsorptive capacity of nine types of dyes, and chitin obtained from fSHP displayed a good adsorption rate on Congo Red and Red No. 7, at 99% and 97%, respectively. In short, the results provide potential support for the utilization of SHP in the production of P. mucilaginosus TKU032 protease via the fermentation as well as the preparation of chitin from fSHP as an effective dye adsorbent.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Ngoc Tran
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Chuan-Lu Wang
- Department of Fashion Beauty Design, Lan Yang Institute of Technology, Yilan County 26141, Taiwan;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
6
|
Zhou Y, Ge L, Fan N, Xia M. Adsorption of Congo red from aqueous solution onto shrimp shell powder. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418768945] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two novel adsorbents derived from shrimp shell were prepared and their adsorption performances on Congo red were investigated. The results suggested that treated shrimp shell powder exhibited a higher adsorption capacity than raw shrimp shell powder. The factors of initial concentration, solution pH, adsorption time, and temperature were investigated. The maximum adsorption capacity of treated shrimp shell powder calculated according to the Langmuir isotherm model was 288.2 mg/g, which is much higher than that of chitin. The adsorption behavior could be fitted well by the pseudo-second-order kinetic model. Intra-particle diffusion model was also used to study the adsorption process. The thermodynamic parameters indicated the spontaneous and endothermic nature of the adsorption. Shrimp shell powder exhibited enough advantages such as large adsorption capacity, low cost, simple processing methods and high specific gravity compared with chitin or chitosan. This work confirmed that the shrimp shell biosorbent had a potential to be applied in dye wastewater treatment area.
Collapse
Affiliation(s)
- Youzhou Zhou
- Department of Marine Science, Ocean College, Zhejiang University, China
| | - Liuqin Ge
- Department of Marine Science, Ocean College, Zhejiang University, China
| | - Neng Fan
- Department of Marine Science, Ocean College, Zhejiang University, China
| | - Meisheng Xia
- Department of Marine Science, Ocean College, Zhejiang University, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, China
| |
Collapse
|
7
|
Zhou Y, Ge L, Fan N, Dai L, Xia M. Cure characteristics, mechanical, thermal, and coloring properties of natural rubber/dye-loaded shell powder composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.45750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Youzhou Zhou
- Department of Marine Science; Ocean College, Zhejiang University; Zhoushan 316021 China
| | - Liuqin Ge
- Department of Marine Science; Ocean College, Zhejiang University; Zhoushan 316021 China
| | - Neng Fan
- Department of Marine Science; Ocean College, Zhejiang University; Zhoushan 316021 China
| | - Lingqing Dai
- Department of Marine Science; Ocean College, Zhejiang University; Zhoushan 316021 China
| | - Meisheng Xia
- Department of Marine Science; Ocean College, Zhejiang University; Zhoushan 316021 China
- State Key Laboratory of Satellite Ocean Environment Dynamics; Second Institute of Oceanography, State Oceanic Administration; Hangzhou 330100 China
| |
Collapse
|