1
|
Sohail N, Farhat H, Qureshi SA, Ullah I, Ali MS. The brown algae: Sargassum binderi sonder shows a potential nephroprotective activity in in-vivo experimental model. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1046-1061. [PMID: 38871117 DOI: 10.1016/j.pharma.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES This study aimed to investigate the protective activity of brown seaweed, the ethanolic and water extracts of Sargassum binderi (S. binderi) were examined. Anticancer drug, cisplatin is normally used for the treatment of solid tumors that cause acute kidney damage after assemblage in the renal tubules. MATERIAL AND METHODS It was an acute nephrotoxicity study, animals were divided into several groups randomly, cisplatin (7mg/kg i.p.) and normal saline were used as positive and negative control respectively. The S. bindari ethanolic and water extract were given orally in a dose of 200mg/kg for 5days. Various biomarkers were assessed to observe the nephroprotective potential, while antioxidant activities were investigated using reduced glutathione, catalase and malondialdehyde as oxidative stress. GCMS was performed to validate the presence of important therapeutic moieties. RESULTS The current result justified that pretreatment with S. binderi inhibited the elevation of antioxidant parameters and also showed protection against lipid peroxidation, induced by cisplatin challenge. The overall impact was the nephroprotection, which has been revealed from the results. GCMS evaluation of hexanes fraction revealed the presence of therapeutically important compounds including heptasiloxane, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, hexadecamethyl, cyclooctasiloxane, and hexadecamethyl. These compounds have been reported for their antioxidant, antibacterial, anticancer, and antifungal activities. CONCLUSION S. binderi showed reno-protective effect by checking their well-known biochemical parameters probably due to the antioxidant activity as confirmed by the presence of compounds.
Collapse
Affiliation(s)
- Nida Sohail
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan.
| | - Hafiza Farhat
- Institute of Biological Sciences, Gomal University, D.I Khan, D.I Khan 29050, Pakistan
| | - Shamim Akhtar Qureshi
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| | - Irfan Ullah
- Department of Neuroscience, The University of Minnesota, Minneapolis, MN 55455, United States
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| |
Collapse
|
2
|
Rehman YU, Iqbal A, Ali G, Alotaibi G, Ahmed A, Ayaz M. Phytochemical analysis, radical scavenging and glioblastoma U87 cells toxicity studies of stem bark of buckthorn (Rhamnus pentapomica R. Parker). BMC Complement Med Ther 2024; 24:12. [PMID: 38167318 PMCID: PMC10759440 DOI: 10.1186/s12906-023-04309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND During the past two decades, the correlation between oxidative stress and a variety of serious illnesses such as atherosclerosis, chronic obstructive pulmonary disease (COPD), Alzheimer disease (AD) and cancer has been established. Medicinal plants and their derived phytochemicals have proven efficacy against free radicals and their associated diseases. The current work was aimed to evaluate the phytochemical constituents of Rhamnus pentapomica R. Parker via Gas Chromatography-Mass Spectrometry (GC-MS) and its antioxidant and anti-glioblastoma potentials. METHODS The bioactive compounds were analysed in Rhamnus pentapomica R. Parker stem bark extracts by GC-MS analysis, and to evaluate their antioxidant and anti-glioblastoma effects following standard procedures. The stem bark was extracted with 80% methanol for 14 days to get crude methanolic extract (Rp.Cme) followed by polarity directed fractionation using solvents including ethyl acetate, chloroform, butanol to get ethyl acetate fraction (Rp.EtAc), chloroform fraction (Rp.Chf) and butanol fraction (Rp.Bt) respectively. Antioxidant assay was performed using DPPH free radicals and cell viability assay against U87 glioblastoma cancer cell lines was performed via MTT assay. RESULTS In GC-MS analysis, thirty-one compounds were detected in Rp.Cme, 22 in Rp.Chf, 24 in Rp.EtAc and 18 compounds were detected in Rp.Bt. Among the identified compounds in Rp.Cme, 9-Octadecenoic acid (Z)-methyl ester (7.73%), Octasiloxane (5.13%) and Heptasiloxane (5.13%), Hexadecanoic acid, methyl ester (3.76%) and Pentadecanoic acid, 14-methyl-, methyl Ester (3.76%) were highly abundant.. In Rp.Chf, Benzene, 1,3-dimethyl- (3.24%) and in Rp.EtAc Benzene, 1,3-dimethyl-(11.29%) were highly abundant compounds. Antioxidant studies revealed that Rp.Cme and Rp.EtAc exhibit considerable antioxidant potentials with IC50 values of 153.53 μg/ml and 169.62 μg/ml respectively. Both fractions were also highly effective against glioblastoma cells with IC50 of 147.64 μg/ml and 76.41ug/ml respectively. CONCLUSION Phytochemical analysis revealed the presence of important metabolites which might be active against free radicals and glioblastoma cells. Various samples of the plant exhibited considerable antioxidant and anti-glioblastoma potentials warranting further detailed studies.
Collapse
Affiliation(s)
- Yaseen Ur Rehman
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Alshebli Ahmed
- Public Health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
- Faculty of Public and Environmental Health, UofK, Khartoum, Sudan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP, 18000, Pakistan.
- Department of Pharmacy, University of Malakand, Dir (L), Khyber Pakhtunkhwa, 18800, Pakistan.
| |
Collapse
|
3
|
Sharma S, Padhi S, Chourasia R, Dey S, Patnaik S, Sahoo D. Phytoconstituents from Urtica dioica (stinging nettle) of Sikkim Himalaya and their molecular docking interactions revealed their nutraceutical potential as α-amylase and α-glucosidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2649-2658. [PMID: 37599855 PMCID: PMC10439086 DOI: 10.1007/s13197-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
In this study, antioxidative methanolic leaf extract (MeOH-SIS) of Urtica dioica was characterized for anti-diabetic activity. The extract was purified on a column to yield seven homogenous fractions (F1-F7) which were further determined for DPPH radical scavenging activity. MeOH-SIS and the fraction F1 (selected based on % yield and activity) were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activity. The results showed inhibition of both enzymes in a dose dependent manner and F1 exhibited relatively higher inhibition than its mother extract MeOH-SIS. GC-MS analyses of both the extracts identified 24 major compounds among which 10 were previously described as bioactive compounds. Among all, 5 compounds demonstrated to have quality pharmacokinetics profiles and were examined for possible binding affinity against the active sites of α-amylase and α-glucosidase using molecular docking. The binding interaction of 2R-acetoxymethyl-1,3,3-trimethyl-4 T-(3-methyl-2-buten-1-yl)-1 T-cyclohexanol within the active sites of the target receptors was found to be significant among others, and can be developed as a potential inhibitor of α-amylase and α-glucosidase. The leaf extract can be utilized to develop food additive for the control and management of oxidative stress induced diabetes.
Collapse
Affiliation(s)
- Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Sourav Dey
- Gauhati Biotech Park, Gauhati, 781031 India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Gebreyohannes G, Sbhatu DB. Wild Mushrooms: A Hidden Treasure of Novel Bioactive Compounds. Int J Anal Chem 2023; 2023:6694961. [PMID: 37781342 PMCID: PMC10541307 DOI: 10.1155/2023/6694961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Secondary metabolites are hidden gems in mushrooms. Understanding these secondary metabolites' biological and pharmacological effects can be aided by identifying them. The purpose of this work was to profile the mycochemical components of the extracts of Auricularia auricula judae, Microporus xanthopus, Termitomyces umkowaani, Trametes elegans, and Trametes versicolor to comprehend their biological and pharmacological capabilities. Mushroom samples were collected from Kenya's Arabuko-Sokoke and Kakamega National Reserved Forests and identified using morphological and molecular techniques. Chloroform, 70% ethanol, and hot water solvents were used to extract the mycochemical components. Gas chromatography mass spectrometry (GC-MS) was used to analyze the chloroform, 70% ethanol, and hot water extracts of all the species examined. A total of 51 compounds were isolated from all extracts and classified as carboxylic acids, esters, phenols, fatty acids, alcohol, epoxides, aldehydes, fatty aldehydes, isoprenoid lipids, and steroids. Tetracosamethyl-cyclododecasiloxane (18.90%), oleic acid (72.90%), phenol, 2, 6-bis (1, 1-dimethylethyl)-4-methyl-, and methylcarbamate (26.56%) were all found in high concentrations in A. auricular judae, M. xanthopus, T. umkowaani, T. elegans, and T. versicolor, respectively. Fatty acids make up the majority of the compounds isolated from the T. elegans chloroform extract and the T. umkowaani 70% ethanol extract, respectively. Particularly, these fatty acids play crucial roles in the anti-inflammatory, hypocholesterolemic, anticancer, and antibiofilm formation activities. These bioactive elements indicate that the extracts of five wild mushrooms may be reliable sources of secondary metabolites for therapeutic development. Therefore, additional research is required to comprehend the usefulness of these chemicals in many functional areas and to improve the present understanding of macrofungi.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| |
Collapse
|
5
|
Abedi E, Tavakoli A, Zamanizadeh S, Maleki S, Jassbi AR. The correlation among residual nitrites, biogenic amines, N-nitrosamine formation, and degradation occurrence of punicalagin α/β, rosmarinic acid, carnosol, and carnosic acid in extract-treated sausage during storage. Food Sci Nutr 2023; 11:5409-5426. [PMID: 37701211 PMCID: PMC10494630 DOI: 10.1002/fsn3.3498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
The aim of this study was to investigate the relation between residual α- and β-punicalagin in Punica granatum L.; PPE and rosmarinic acid, carnosol, and carnosic acid in Salvia eremophila (SE) with residual nitrites, biogenic amines (cadaverine, putrescine, and histamine), N-nitrosodimethylamine (NDMA), microbial counts, lipid oxidation indices, and color values in extract-treated sausage over 14 days of storage. Sausage containing SE + nitrite 60 ppm (SSN) showed minimum levels of the residual nitrites (13.14 mg/kg), NDMA (0.74 ± 0.05 μg/kg), and biogenic amine (histamine, 1.8 mg/kg; cadaverine, 3.7 mg/kg; and putrescine, 4.3 mg/kg) due to retarded degradation rate of 285.84-216.44 mg/kg; rosmarinic acid, 41.62-33.16 mg/kg; carnosol, and 88.70-76.73 mg/kg; carnosic acid over storage time. The first-order kinetic model fitted well for the degradation of rosmarinic acid and carnosol acid in SSN sample. TBA value remained below the threshold limit (0.32 mg kg-1) through 14 days for SSN. Second-order and zero-order reaction models had the best agreement with sausages' PV and TBA values, respectively. After 2 weeks of storage, E. coli and Cl. perfringens counts in the SN120 (sausage containing 120 ppm nitrite) and SSN were significantly lower than the other samples (p < .05), with the values 2.1 and 1.5 log cfu/g for SN120 and 2.2 and 1.6 log cfu/g for SSN formulation. Conversely, oxidation indices, residual nitrites, NDMA, and biogenic amine increased in sausage samples containing PPE extracts (SPN) owing to total degradation of α- and β-punicalagin during storage. The results indicated that SE can be used as potential co-preservative by reducing the levels of required nitrite in food industry.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of AgricultureFasa UniversityFasaIran
| | - Atefeh Tavakoli
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| | - Simin Zamanizadeh
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| | - Shahrzad Maleki
- Department of Civil Engineering, Faculty of EngineeringFasa UniversityFasaIran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, Sánchez Zárate A, Ochoa-Flores AA, Segura-Campos MR, Vargas-Bello-Pérez E, Chay-Canul AJ. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023; 9:e17071. [PMID: 37383206 PMCID: PMC10293679 DOI: 10.1016/j.heliyon.2023.e17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.
Collapse
Affiliation(s)
| | | | | | | | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| | - Maira Rubi Segura-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, Mérida, Yucatán, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, 31453, Mexico
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| |
Collapse
|
7
|
Abdallah R, Mostafa NY, Kirrella GAK, Gaballah I, Imre K, Morar A, Herman V, Sallam KI, Elshebrawy HA. Antimicrobial Effect of Moringa oleifera Leaves Extract on Foodborne Pathogens in Ground Beef. Foods 2023; 12:foods12040766. [PMID: 36832841 PMCID: PMC9956989 DOI: 10.3390/foods12040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Consumers nowadays are becoming more aware of the importance of using only meat products containing safe and natural additives. Hence, using natural food additives for extending the shelf life of meat along with delaying microbial growth has become an urgent issue. Given the increasingly popular view of Moringa oleifera leaves as a traditional remedy and also the scarcity of published data concerning its antimicrobial effect against foodborne pathogens in meat and meat products, we designed the present study to investigate the antimicrobial effect of Moringa oleifera leaves aqueous extract (0.5%, 1%, and 2%) on ground beef during refrigerated storage at 4 °C for 18 days. MLE revealed potent antimicrobial properties against spoilage bacteria, such as aerobic plate count and Enterobacteriaceae count. MLE 2% showed a significant (p < 0.01) reduction in the counts of E. coli O157:H7, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus artificially inoculated to ground beef by 6.54, 5.35, and 5.40 log10 CFU/g, respectively, compared to control, by the 18th day of storage. Moringa leaves extract (MLE) had no adverse effect on the overall acceptability and other sensory attributes; moreover, it induced a slight improvement in the tenderness and juiciness of treated ground beef, compared to the control. Therefore, MLE can be used as a healthy, natural, and safe preservative to increase meat products' safety, quality, and shelf stability during cold storage. A promising approach for using natural food additives rather than chemical preservatives could begin new frontiers in the food industry, as they are more safe and do not constitute health risks to consumers.
Collapse
Affiliation(s)
- Reda Abdallah
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Nader Y. Mostafa
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Ghada A. K. Kirrella
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Ibrahim Gaballah
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- Correspondence: or (K.I.); (K.I.S.); Tel.: +40-256277186 (K.I.); +20-1000479670 (K.I.S.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or (K.I.); (K.I.S.); Tel.: +40-256277186 (K.I.); +20-1000479670 (K.I.S.)
| | - Hend Ali Elshebrawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Nyalo P, Omwenga G, Ngugi M. Quantitative Phytochemical Profile and In Vitro Antioxidant Properties of Ethyl Acetate Extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). J Evid Based Integr Med 2023; 28:2515690X231165096. [PMID: 36945829 PMCID: PMC10034282 DOI: 10.1177/2515690x231165096] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Overproduction of free radicals in excess of antioxidants leads to oxidative stress which can cause harm to the body. Conventional antioxidants have drawbacks and are believed to be carcinogenic. The present study seeked to confirm folklore use and validate the antioxidant potentials of Grewia tembensis and Xerophyta spekei which have been widely used in the Mbeere community as medicinal plants. Antioxidant properties were determined through scavenging effects of diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide radicals as well as iron chelating effects. The data obtained was assayed in comparison to the standards (Ascorbic acid and EDTA). Ascorbic acid had a significantly greater DPPH radical scavenging property with an inhibitory concentration (IC50) value of 20.54 ± 2.24 µg/mL in comparison to the plant extracts, which had IC50 values of 33.00 ± 1.47 µg/mL, 69.66 ± 1.01 µg/mL and 86.88 ± 2.64 µg/mL for X. spekei, G. tembensis leaf and G. tembensis stem bark extracts, respectively. EDTA demonstrated a significantly greater iron chelating effect having a significantly lesser IC50 value of 25.05 ± 0.79 µg/mL as opposed to 43.56 ± 0.46 µg/mL, 89.78 ± 0.55 µg/mL, and 120.70 ± 0.71 µg/mL for X. spekei, G. tembensis leaf, and G. tembensis stem bark extracts respectively. Additionally, ascorbic acid also exhibited stronger hydrogen peroxide radical scavenging effect than the studied extracts. Generally, X. spekei extract had higher antioxidant activities as compared to both the leaf and stem bark extracts of G. tembensis. The phytochemical screening demonstrated the presence of secondary metabolites associated with antioxidant properties. The present study therefore, recommends ethno medicinal and therapeutic use of G. tembensis and X. spekei in the treatment and management of oxidative stress related infections.
Collapse
Affiliation(s)
- Paul Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
- Medical Laboratory Department, Penda Health (K) Ltd, Nairobi, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| |
Collapse
|
9
|
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227995. [PMID: 36432098 PMCID: PMC9696032 DOI: 10.3390/molecules27227995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Indigenous leafy vegetables (ILVs) play a pivotal role in sustaining the lives of many people of low socio-economic status who reside in rural areas of most developing countries. Such ILVs contribute to food security since they withstand harsher weather and soil conditions than their commercial counterparts and supply important nutrients such as dietary fibre, vitamins and minerals. Furthermore, ILVs contain bioactive components such as phenolic compounds, flavonoids, dietary fibre, carotene content and vitamin C that confer health benefits on consumers. Several studies have demonstrated that regular and adequate consumption of vegetables reduces risks of chronic conditions such as diabetes, cancer, metabolic disorders such as obesity in children and adults, as well as cardiovascular disease. However, consumption of ILVs is very low globally as they are associated with unbalanced and poor diets, with being food for the poor and with possibly containing toxic heavy metals. Therefore, this paper reviews the role of ILVs as food security crops, the biodiversity of ILVs, the effects of processing on the bioactivity of ILVs, consumer acceptability of food derived from ILVs, potential toxicity of some ILVs and the potential role ILVs play in the future of eating.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - July Johannes Sibanyoni
- School of Hospitality and Tourism, University of Mpumalanga, Mbombela Campus, Mbombela 1200, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 1709, South Africa
- Correspondence:
| |
Collapse
|
10
|
Effect of Different Fat and Moringa oleifera Leaf Meal (MOLM) Inclusion Levels on Proximate Composition, Fatty Acid Profile, and Lipid Oxidation of Chicken Droëwors. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:6736935. [PMID: 36111251 PMCID: PMC9470374 DOI: 10.1155/2022/6736935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
We present the first report on the effect of graded levels of Moringa oleifera leaf meal (MOLM) (0, 0.25, and 0.5%) and fat (0, 10, and 15%) on fatty acid profile, lipid oxidation, and proximate composition of chicken droëwors. On triplicate samples of all treatments, proximate analysis was done, the total lipid was quantitatively extracted using chloroform and methanol in a ratio of 2 : 1, fatty acid profiles were determined, and thiobarbituric acid reactive substances (TBARS) were measured. The present study showed that droëwors manufactured with 0% fat inclusion had less fat and more protein than those made with 10% and 15% fat. All treatments contained a greater percentage of C18:1c9 (oleic) (30.95 to 32.65%) acid than other fatty acids and a higher proportion of unsaturated fatty acids than saturated. T9 (15% fat, 0.5% MOLM) had significantly (
) higher PUFAs than T1 (0% fat, 0% MOLM) and T4 (10% fat, 0% MOLM). Treatments with 0.5% MOLM had significantly lower TBARS values after drying (0.01-0.07 mg MDA/kg) than treatments with 0% and 2.5% MOLM (0.05–0.15 mg MDA/kg). Therefore, MOLM inclusion at 0.25 and 0.5% effectively decreased TBARS of chicken droëwors with up to 15% fat inclusion after 72 h of drying and 168 h of storage and is a potentially good source of natural antioxidants for this traditional dried sausage product.
Collapse
|
11
|
N.S L, A.J A, E. M I. Warmed-over flavour profiles, microbial changes, shelf-life and check-all-that-apply sensory analysis of cooked minced pork treated with varying levels of Moringa oleifera leaf and root powder. Heliyon 2022; 8:e10616. [PMID: 36148278 PMCID: PMC9485040 DOI: 10.1016/j.heliyon.2022.e10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigated warmed-over flavour profiles, microbial changes, shelf-life and sensory characteristics of minced cooked pork treated with Moringa oleifera (M. oleifera) root and leaf powder during refrigerated storage at 4 °C. A total of 8 treatments (control = no antioxidant; 0.5ML = 0.5% M. oleifera leaf; 1ML = 1% M. oleifera leaf; 0.5MR = 0.5 % M. oleifera root; 1MR = 1% M. oleifera root; 0.5MLR = 0.5% M. oleifera leaf and root mixed; 1MLR = 1% M. oleifera leaf and root mixed; BHT = 0.02% butylated hydroxytoluene) were evaluated. The minimum inhibitory concentration (MIC) of the plant extracts against the test bacteria was determined using the serial dilution in 96 well microtiter plates technique. Warmed-over flavour profiles were determined using the test for carbonyls assay where hexanal was used as a marker for warmed-over flavour. The check-all-that-apply sensory tool was used to characterise minced cooked pork treated with different antioxidants according to warmed-over flavour taste and odour intensities. The results showed that the antibacterial assay of the extracts exhibited a broad-spectrum of activity against the tested bacteria. The leaf extracts demonstrated better activity against both gram-negative and gram-positive bacteria, with most of the MICs at less than 1 mg/mL, while the root performed better against gram-negative bacteria compared to gram-positive bacteria. There was a significant rapid increase in the warmed-over flavour profiles of the control compared to the M. oleifera and BHT treated pork. The pork samples which had M. oleifera leaf, root, and their combination at inclusion levels of 1% and 0.5% displayed lower warmed-over flavour profiles that fell in the range (1.0–1.46 mg hexanal/100g fat) throughout the storage period. Consumer sensory evaluation revealed that pork samples treated with the highest inclusion level (1%) of the M. oleifera leaf powder received the lowest consumer rating scores for appearance. Based on these results, adding M. oleifera leaf and root powder can decrease warmed-over flavour development and improve the shelf-life of processed pork. Furthermore, the incorporation of M. oleifera root powder can potentially be more acceptable to consumers because of its colour compared to the leaf, which gives the product a green colour that may not be pleasant for some consumers. This suggests that the inclusion of the root powder at 1% may be well accepted for consumption by consumers.
Collapse
Affiliation(s)
- Lungu N.S
- Centre for the Advancement of Scholarship, University of Pretoria, Pretoria 0002, South Africa
- Corresponding author.
| | - Afolayan A.J
- University of Fort Hare, Faculty of Science and Agriculture P. Bag X 1314, Alice Campus, 5700, South Africa
| | - Idamokoro E. M
- Walter Sisulu University, Faculty of Commerce and Administration Department of Economics and Business Sciences, P. Bag X1 Mthatha 5117, South Africa
| |
Collapse
|
12
|
Mazhangara IR, Jaja IF, Chivandi E. Effect of Teucrium trifidum powder on some meat quality attributes of chevon under refrigerated storage. Heliyon 2022; 8:e09376. [PMID: 35600446 PMCID: PMC9118117 DOI: 10.1016/j.heliyon.2022.e09376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
We investigated the effect of T. trifidum on the shelf-life and quality of chevon kept for eight days at 4 ± 1 °C in polyethylene pouches. Different powder levels of T. trifidum (0.5 %, 1.0 %, and 2.0 % w/w) and 0.02 % w/w butylated hydroxytoluene (BHT) were used to treat the chevon samples. The T. trifidum and BHT treated chevon was compared to untreated chevon (control). Colour, ferric reducing antioxidant power (FRAP), lactic acid bacteria (LAB) counts, oxidative stability, pH and total viable counts (TVC) were all measured while the samples were in storage. Treatment demonstrated a significant (P < 0.05) influence on pH with chevon preserved with T. trifidum powder (2 %), having a lower pH than the chevon preserved with BHT and the control. The colour of chevon (lightness, redness and yellowness) was shown to differ (P < 0.05) across treatments. The redness (a∗) and yellowness (b∗) reduced as the refrigeration period lengthened (P < 0.05). In contrast, the lightness (L∗) of chevon intensified as the storage period lengthened (P < 0.05). The TBARS considerably reduced (P < 0.05) in samples subjected to T. trifidum powder and BHT, with respect to the untreated sample. There was an increase in the FRAP activity as the amount of T. trifidum powder (P < 0.05) was increased. The FRAP values were shown to be inversely related to the TBARS values, implying that the addition of T. trifidum powder could slow lipid oxidation. In comparison with the control, T. trifidum powder inhibited bacterial growth during storage as measured by a significant reduction in TVC and LAB counts (P < 0.05). It is concluded that, T. trifidum powder has potent antioxidant and antimicrobial activity in refrigerated ground chevon thus can be potentially used to preserve the quality of refrigerator stored ground chevon.
Collapse
|
13
|
Kar B, Chandar B, Rachana SS, Bhattacharya H, Bhattacharya D. Antibacterial and genotoxic activity of Bixa orellana, a folk medicine and food supplement against multidrug resistant clinical isolates. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Quality and Oxidative Changes of Minced Cooked Pork Incorporated with Moringa oleifera Leaf and Root Powder. SUSTAINABILITY 2021. [DOI: 10.3390/su131810126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consumers are currently demanding meat products produced using natural additives due to their potential health benefits. Consequently, there has been a progressive interest in the search for more natural antioxidant sources. The aim of this study was to evaluate the effect of varying levels of M. oleifera root and leaf powder on the oxidative stability and quality of cooked minced pork during eight days of refrigerated storage at 4 °C. The leaves contained significantly higher (p ˂ 0.05) concentrations of total phenols (50.08 ± 0.01 mg GAE/g), while the roots contained the highest amounts of flavonoids (375.15 ± 0.19 mg QE/g) and proanthocyanidins (132.62 ± 0.4 mg CE/g). Both plant parts demonstrated good 2,2-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2 íazino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging activity. Minced cooked pork incorporated with M. oleifera leaf and root powder had significantly lower pH and thiobarbituric acid-reactive substances (TBARS) values compared to the control (p < 0.05). The ferric reducing antioxidant power (FRAP) was also significantly higher in the samples that incorporated antioxidants compared to the control (p < 0.05). Findings from this study suggest that M. oleifera leaves and roots are potent antioxidant sources which can be incorporated in meat to improve quality attributes during storage.
Collapse
|
16
|
Natural Antioxidants from Endemic Leaves in the Elaboration of Processed Meat Products: Current Status. Antioxidants (Basel) 2021; 10:antiox10091396. [PMID: 34573028 PMCID: PMC8466473 DOI: 10.3390/antiox10091396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/01/2023] Open
Abstract
During the last few years, consumers' demand for animal protein and healthier meat products has increased considerably. This has motivated researchers of the meat industry to create products that present healthier components while maintaining their safety, sensory characteristics, and shelf life. Concerning this, natural plant extracts have gained prominence because they can act as antioxidants and antimicrobials, increasing the stability and shelf life of processed meat products. It has been observed that the leaves of plant species (Moringa oleifera, Bidens pilosa, Eugenia uniflora, Olea europea, Prunus cerasus, Ribes nigrum, etc.) have a higher concentration and variety of polyphenols than other parts of the plants, such as fruits and stems. In Chile, there are two native berries, maqui (Aristotelia chilensis) and murtilla (Ugni molinae Turcz), that that stand out for their high concentrations of polyphenols. Recently, their polyphenols have been characterized, demonstrating their potential antioxidant and antimicrobial action and their bioactive action at cellular level. However, to date, there is little information on their use in the elaboration of meat products. Therefore, the objective of this review is to compile the most current data on the use of polyphenols from leaves of native plants in the elaboration of meat products and their effect on the oxidation, stability, and organoleptic characteristics during the shelf life of these products.
Collapse
|
17
|
Ruiz-Hernández K, Sosa-Morales ME, Cerón-García A, Gómez-Salazar JA. Physical, Chemical and Sensory Changes in Meat and Meat Products Induced by the Addition of Essential Oils: A Concise Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - María Elena Sosa-Morales
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - Abel Cerón-García
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
18
|
Efenberger-Szmechtyk M, Gałązka-Czarnecka I, Otlewska A, Czyżowska A, Nowak A. Aronia melanocarpa (Michx.) Elliot, Chaenomeles superba Lindl. and Cornus mas L. Leaf Extracts as Natural Preservatives for Pork Meat Products. Molecules 2021; 26:molecules26103009. [PMID: 34070170 PMCID: PMC8158479 DOI: 10.3390/molecules26103009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the possibility of using Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts as natural preservatives for pork meat products. Pork sausages were stored in modified atmosphere packaging (MAP) (80% N2 and 20% CO2) at 4 °C for 29 days. The total psychrotrophic counts (TPC) were determined during the storage period, along with the numbers of Enterobacteriaceae and lactic acid bacteria (LAB). The extracts improved the microbial quality of the meat products but to a lesser extent than sodium nitrate (III). They reduced the amounts of Enterobacteriaceae and LAB. The A.melanocarpa leaf extract showed the strongest preservative effect. The bacterial biodiversity of the meat products was investigated based on high-throughput sequencing of the 16S rRNA gene. Two predominant bacteria phyla were identified, Proteobacteria and Firmucutes, mostly consisting of genera Photobacterium, Brochothrix, and Carnobacterium. The extracts also influenced microbial community in sausages decreasing or increasing bacterial relative abundance. The extracts significantly inhibited lipid oxidation and improved the water-holding capacity of the meat, with C. superba extract showing the strongest influence. In addition, A. melanocarpa and C. superba improved the redness (a*) of the sausages. The results of this study show that A. melanocarpa, C. superba, and C. mas leaf extracts can extend the shelf life of meat products stored in MAP at 4 °C.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
- Correspondence:
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| |
Collapse
|
19
|
Delfino LA, Mattje LGB, Silva M, Araujo MC, Tormen L, Bainy EM. Evaluation of Moringa and Lavandula extracts as natural antioxidants in tilapia fish burger. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1883494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- L. A. Delfino
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - L. G. B. Mattje
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - M. Silva
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - M. C. Araujo
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - L. Tormen
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| | - E. M. Bainy
- Food Engineering Undergraduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
- Food Science and Technology Graduate Program, Federal University of Fronteira Sul, Laranjeiras Do Sul, Brazil
| |
Collapse
|
20
|
Cunha LCM, Monteiro MLG, Costa‐Lima BRC, Guedes‐Oliveira JM, Rodrigues BL, Fortunato AR, Baltar JD, Tonon RV, Koutchma T, Conte‐Junior CA. Effect of microencapsulated extract of pitaya (
Hylocereus costaricensis
) peel on oxidative quality parameters of refrigerated ground pork patties subjected to UV‐C radiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Maria Lúcia Guerra Monteiro
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
- Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Núcleo de Análise de Alimentos (NAL – LADETEC), Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
| | | | - Juliana Maria Guedes‐Oliveira
- Departamento de Tecnologia de Alimentos Instituto Federal de EducaçãoCiência e Tecnologia da Paraíba João Pessoa Brasil
| | - Bruna Leal Rodrigues
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | - Alice Raquel Fortunato
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | - Jéssica Diogo Baltar
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
| | | | | | - Carlos Adam Conte‐Junior
- Departamento de Tecnologia de Alimentos Universidade Federal Fluminense Rio de Janeiro Brasil
- Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Núcleo de Análise de Alimentos (NAL – LADETEC), Universidade Federal do Rio de Janeiro Rio de Janeiro Brasil
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz Rio de Janeiro Brasil
| |
Collapse
|
21
|
Lee SY, Lee DY, Kim OY, Kang HJ, Kim HS, Hur SJ. Overview of Studies on the Use of Natural Antioxidative Materials in Meat Products. Food Sci Anim Resour 2020; 40:863-880. [PMID: 33305273 PMCID: PMC7713766 DOI: 10.5851/kosfa.2020.e84] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/07/2022] Open
Abstract
Studies conducted in the past decade related to the use of natural antioxidants
in meat products revealed the prevalent use of plant-based antioxidative
materials added as powders, extracts, or dried or raw materials to meat
products. The amount of antioxidative materials varied from 7.8 ppm to
19.8%. Extracts and powders were used in small amounts (ppm to grams) and
large amounts (grams to >1%), respectively. Antioxidative
materials used in meat products are mainly composed of phenolic compounds and
flavonoids, which are able to inhibit lipid peroxidation of meat products,
thereby preserving meat quality. However, the main ingredients used in processed
meat products are the traditional additives, such as sodium erythorbate, sodium
hydrosulfite, and synthetic antioxidants, rather than natural antioxidants. This
difference could be attributed to changes in the sensory quality or
characteristics of meat products using natural antioxidants. Therefore, novel
research paradigms to develop meat products are needed, focusing on the
multifunctional aspects of natural antioxidants.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - On You Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hea Jin Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyeong Sang Kim
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
22
|
Mazhangara IR, Idamokoro EM, Chivandi E, Afolayan AJ. Phytochemical screening and in vitro evaluation of antioxidant and antibacterial activities of Teucrium trifidum crude extracts. Heliyon 2020; 6:e04395. [PMID: 32984568 PMCID: PMC7492805 DOI: 10.1016/j.heliyon.2020.e04395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 12/02/2022] Open
Abstract
The objective of the investigation was to identify biologically active polyphenols and to determine the antioxidant and antimicrobial capacity of Teucrium trifidum extracted with different organic solvents (acetone, ethanol and methanol) and distilled water. The results of the study revealed varying levels of polyphenols in the different solvent extracts. Condensed tannin, flavonoid and total phenolic content ranged from (77.339 ± 1.068) to (99.395 ± 1.490) mg CE/g; (3.398 ± 0.2410) to (53.253 ± 0.638) mg QE/g; (14.1087 ± 0.0915) to (21.7977 ± 0.0279) mg GAE/g, respectively. The extracts demonstrated high antioxidant activity in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and total antioxidant capacity (TAC) assays which were comparable to rutin and butylated hydroxytoluene (BHT) and increased with increasing concentrations of polyphenols extract (P < 0.05). The agar dilution assay of acetone, ethanol and methanol extracts revealed an appreciable broad-spectrum activity against tested pathogenic bacteria. The findings of this study provide evidence that T. trifidum can be used as a natural source of antioxidant and antimicrobial components.
Collapse
Affiliation(s)
- Irene Rumbidzai Mazhangara
- Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Emrobowansan Monday Idamokoro
- Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- MPED Research Center, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Eliton Chivandi
- School of Physiology, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Anthony Jide Afolayan
- MPED Research Center, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
23
|
Rifai L, Mohammad M, Raafat K, Saleh FA. In Vitro and In Vivo Evaluation of the Protective Potential of Moringa oleifera Against Dietary Acrylamide-induced Toxicity. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A
c
rylamide (AA) in food is a public health concern that has attracted scientists’ attention worldwide.
Objective:
This study was carried out to investigate the efficiency of
Moringa oleifera (M. olifera)
leaves in the reduction of AA in French fries in vitro and its hepato-protective properties against AA-induced liver toxicity in vivo.
Materials and Methods:
Total phenolic, flavonoid, tannin contents and antioxidant potential of
M. oleifera
leaves were evaluated and the phenolic constituents characterized via HPLC. AA content was also monitored in French fries using LC-MS/MS. For in vivo assay, mice were treated with AA alone or in combination with
M. oleifera
(150 and 250 mg/kg IP).
Results:
Phytochemical screening showed that gallic acid, ellagic acid, epicatechin, and quercetin were the most abundant phenolic compounds identified. This work also demonstrated a nearly 37% reduction in AA when French fries were soaked in 1% M. oleifera. Moreover, AA-intoxicated mice resulted in a significant (P < 0.05) elevation in the liver enzyme alanine aminotransferase (ALT), which was restored when pre-treated with M. oleifera.
Conclusion:
This study proved that M. olifera could be effective in reducing AA levels in French fries and that treatment with M. oleifera extract can restore the hepatic damage in AA-intoxicated mice.
Collapse
|
24
|
Nisar MF, Arshad MS, Yasin M, Khan MK, Afzaal M, Sattar S, Suleria HAR. Evaluation of gamma irradiation and moringa leaf powder on quality characteristics of meat balls under different packaging materials. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Faisal Nisar
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Yasin
- Food Science Division Nuclear Institute for Food and Agriculture, Pakistan Atomic Energy Commission Peshawar Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Saira Sattar
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | | |
Collapse
|
25
|
Mukumbo FE, Descalzo AM, Collignan A, Hoffman LC, Servent A, Muchenje V, Arnaud E. Effect of
Moringa oleifera
leaf powder on drying kinetics, physico‐chemical properties, ferric reducing antioxidant power, α‐tocopherol, β‐carotene, and lipid oxidation of dry pork sausages during processing and storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Felicitas E. Mukumbo
- Department of Livestock and Pasture Science University of Fort Hare Alice South Africa
- Rwanda Institute for Conservation Agriculture (RICA) Bugesera Rwanda
| | - Adriana M. Descalzo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos-CIA Buenos Aires Argentina
| | - Antoine Collignan
- QualisudUniv Montpellier, Montpellier SupAgro, CIRAD, Université d'Avignon, Université de La Réunion Montpellier France
| | - Louwrens C. Hoffman
- Department of Animal Sciences University of Stellenbosch Stellenbosch South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct St Lucia Australia
| | - Adrien Servent
- CIRAD UMR Qualisud F-34398Montpellier France
- Qualisud Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon, Université de La Réunion Montpellier France
| | - Voster Muchenje
- Department of Livestock and Pasture Science University of Fort Hare Alice South Africa
| | - Elodie Arnaud
- CIRAD UMR Qualisud F-34398Montpellier France
- Qualisud Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon, Université de La Réunion Montpellier France
| |
Collapse
|
26
|
Arshad MS, Amjad Z, Yasin M, Saeed F, Imran A, Sohaib M, Anjum FM, Hussain S. Quality and stability evaluation of chicken meat treated with gamma irradiation and turmeric powder. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1575395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Muhammad Sajid Arshad
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan
| | - Zaid Amjad
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan
| | - Muhammad Yasin
- Food Science Division, Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Farhan Saeed
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and animal Sciences, Lahore, Pakistan
| | | | - Shahzad Hussain
- College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Yousef FMA, Khattab HARH, Sindi HAA. Effectiveness of Moringa oleifera L. Leaves Extract Against Methotrexate-induced Acute Hepatotoxicity in Male Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.1029.1037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Falowo AB, Mukumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res Int 2018; 106:317-334. [PMID: 29579932 DOI: 10.1016/j.foodres.2017.12.079] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 11/25/2022]
Abstract
Research on the use of various parts of the Moringa oleifera Lam. plant (M. oleifera) as a nutritional and neutraceutical resource for human and animal diets has increased in recent years, emanating from the widespread use of the plant in traditional cuisines and medicinal remedies in several regions of the world. Analytical studies have identified M. oleifera as an important source of essential nutrients; rich in protein, essential amino acids, minerals, and vitamins, with a relatively low amount of antinutrients. It is also a rich source of other bio active compounds including flavonoids and phenolic compounds; with several studies detailing demonstrated in vitro and in vivo functional properties, most substantially, antioxidant activities. Moringa oleifera consumption has been reported to improve the health status, feed conversion efficiency, growth performance and product quality of several livestock species, at dietary inclusion rates generally not exceeding 5% of total dry matter intake. Fortification of processed foods with M. oleifera has been reported to increase nutritional value, some organoleptic properties, oxidative stability and product shelf life; with a notable need for further analytical and consumer studies in the development of these products. There is a paucity of literature detailing clinical studies, nutrient bioavailability, toxicity and the mode of action of the bioactive compounds to which the health claims associated with M. oleifera consumption are attributed. Many of these are not yet fully understood; therefore more research in these areas is required in order to fully utilize the potential benefits of this plant in human and livestock nutrition.
Collapse
Affiliation(s)
- Andrew B Falowo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Felicitas E Mukumbo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Emrobowansan M Idamokoro
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa; MPED Research Center, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibwdrao das Viñas, 32900 Ourense, Spain
| | - Anthony J Afolayan
- MPED Research Center, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - Voster Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
29
|
Uysal S, Ugurlu A, Zengin G, Baloglu MC, Altunoglu YC, Mollica A, Custodio L, Neng NR, Nogueira JMF, Mahomoodally MF. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem Toxicol 2017; 111:525-536. [PMID: 29217268 DOI: 10.1016/j.fct.2017.11.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Abstract
Bidens tripartita L. is a traditional phyto-remedy used in several countries, yet there is still a paucity of data on its biological potential. We aimed to provide new insights on the pharmacological potential of extracts prepared from B. tripartita via highlighting its antioxidant, key enzymes inhibitory potency, and DNA protecting effects. Phytochemical profile was established using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) and bioactive compound(s) docked against target enzymes using in silico methods. Cytotoxicity against three cancer cell lines was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell viability test. The main compounds were luteolin-7-glucoside (cynaroside), chlorogenic acid, and epicatechin in the extracts. The methanol extract exhibited the highest radical scavenging activity. Ethyl acetate extract showed strongest α-amylase inhibitory activity, while the best α-glucosidase inhibitory effect recorded for the methanol extract. Molecular docking showed that cynaroside strongly interact to α-glucosidase cavity by establishing six hydrogen bonds. B. tripartita extracts were found to protect supercoiled form of pUC19 plasmid (>70%) and also showed anti-proliferative properties. Results amassed in the present study add on to a growing body of literature on the multi-pharmacological potency of B. tripartita which can be applied to bio-products development geared towards management of common diseases.
Collapse
Affiliation(s)
- Sengul Uysal
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey.
| | - Asli Ugurlu
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey.
| | - Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Adriano Mollica
- Department of Pharmacy University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Luisa Custodio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Nuno R Neng
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - José M F Nogueira
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
30
|
Premi M, Sharma HK. Effect of drumstick leaves powder on the rheological, micro-structural and physico-functional properties of sponge cake and batter. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|