1
|
Huang J, Zhang J, Wang F, Tang X. Modified Gegen Qinlian Decoction modulated the gut microbiome and bile acid metabolism and restored the function of goblet cells in a mouse model of ulcerative colitis. Front Immunol 2024; 15:1445838. [PMID: 39165355 PMCID: PMC11333261 DOI: 10.3389/fimmu.2024.1445838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective Modified Gegen Qinlian Decoction (MGQD) has been shown to effectively relieve ulcerative colitis (UC) without a known pharmacological mechanism. In this study, the anti-colitis efficaciousness of MGQD and its underlying mechanisms in UC were evaluated. Methods Mice with colitis were administered MGQD for 7 days. Following the evaluation of clinical symptoms, gut microbiota in the feces of UC mice was examined using 16S rRNA sequencing and bile acids (BAs) were examined using LC/MS. Gut microbiota consumption and fecal microbiota transplantation (FMT) were used to explore the involvement of gut microbiota in the anti-UC action of MGQD. Results MGQD relieved colitis as shown by weight loss protection, a lower disease activity index (DAI), restoration of intestinal length reduction, and lower histopathologic scores. MGQD also restored crypt stem cell proliferation and function of colonic goblet cells, and promoted MUC2 protein secretion. Interestingly, investigations using gut bacterial depletion and FMT showed that MGQD attenuated colonic damage in a gut-dependent way. The modulation of the gut microbiota by MGQD might be attributed to a decrease in Odoribacter and an increase in norank_f_Muribaculaceae. In addition, MGQD modulated the metabolism of BAs while restoring the structure of the gut microbiota. Conclusion MGQD significantly alleviated colitis in mice, which may be associated with the modulation of gut microbiota and BA metabolism and restoration of function of goblet cells. However, factors other than the gut microbiota may also be involved in the amelioration of UC by MGQD.
Collapse
Affiliation(s)
- Jinke Huang
- Department of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Long D, Wang C, Huang Y, Mao C, Xu Y, Zhu Y. Changing epidemiology of inflammatory bowel disease in children and adolescents. Int J Colorectal Dis 2024; 39:73. [PMID: 38760622 PMCID: PMC11101569 DOI: 10.1007/s00384-024-04640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) is rising worldwide, but epidemiological data on children and adolescents are lacking. Understanding the global burden of IBD among children and adolescents is essential for global standardization of methodology and treatment options. METHODS This is a cross-sectional study based on aggregated data. We estimated the prevalence and incidence of IBD in children and adolescents between 1990 and 2019 according to the Global Burden of Disease Study 2019 (GBD 2019). Age-standardized rates (ASRs) and estimated annual percentage changes (EAPCs) were used to compare the burden and trends between different regions and countries. RESULTS In 2019, there were 25,659 new cases and 88,829 prevalent cases of IBD among children and adolescents globally, representing an increase of 22.8% and 18.5%, respectively, compared to 1990. Over the past 30 years, the incidence and prevalence of IBD among children and adolescents have been highest in high SDI regions, with the most significant increases in East Asia and high-income Asia Pacific. At the age level, incidence and prevalence were significantly higher in the 15-19-year-old age group, while the < 5-year-old group showed the most significant increase in incidence and prevalence. CONCLUSION The incidence of IBD in children and adolescents is significantly on the rise in some countries and regions, and IBD will remain an important public health issue with extensive healthcare and economic costs in the future. The reported IBD burden in children and adolescents at the global, regional, and national levels will assist in the development of more precise health policies.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenchen Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
3
|
Fu Q, Ma X, Li S, Shi M, Song T, Cui J. New insights into the interactions between the gut microbiota and the inflammatory response to ulcerative colitis in a mouse model of dextran sodium sulfate and possible mechanisms of action for treatment with PE&AFWE. Animal Model Exp Med 2024; 7:83-97. [PMID: 38664929 PMCID: PMC11079155 DOI: 10.1002/ame2.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation. Intestinal innate immunity, including innate immune cells, defends against pathogens and excessive entry of gut microbiota, while preserving immune tolerance to resident intestinal microbiota, and may be characterized by its capacity to produce a rapid and nonspecific reaction. The association between microbiota dysbiosis and the pathogenesis of IBD is complex and dynamic. When the intestinal ecosystem is in dysbiosis, the reduced abundance and diversity of intestinal gut microbiota make the host more vulnerable to the attack of exogenous and endogenous pathogenic gut microbiota. The aim of our study was to comprehensively assess the relationship between microbial populations within UC, the signaling pathways of pathogenic gut microbe therein and the inflammatory response, as well as to understand the effects of using PE&AFWE (poppy extract [Papaver nudicaule L.] and Artemisia frigida Willd. extract) on UC modulation. METHODS A UC mouse model was established by inducing SPF-grade C57BL/6 mice using dextrose sodium sulfate (DSS). Based on metagenomic sequencing to characterize the gut microbiome, the relationship between gut microbiota dysbiosis and gut microbiota was further studied using random forest and Bayesian network analysis methods, as well as histopathological analysis. RESULTS (1) We found that the 5 gut microbiota with the highest relative abundance of inflammatory bowel disease UC model gut microbiota were consistent with the top 5 ranked natural bacteria. There were three types of abundance changes in the model groups: increases (Chlamydiae/Proteobacteria and Deferribacteres), decreases (Firmicutes), and no significant changes (Bacteroidetes). The UC model group was significantly different from the control group, with 1308 differentially expressed species with abundance changes greater than or equal to 2-fold. (2) The proportion of the fecal flora in the UC group decreased by 37.5% in the Firmicutes and increased by 14.29% in the proportion of Proteobacteria compared to the control group before treatment. (3) The significantly enriched and increased signaling pathways screened were the 'arachidonic acid metabolic pathway' and the 'phagosomal pathway', which both showed a decreasing trend after drug administration. (4) Based on the causal relationship between different OTUs and the UC model/PE&AFWE administration, screening for directly relevant OTU networks, the UC group was found to directly affect OTU69, followed by a cascade of effects on OTU12, OTU121, OTU93, and OTU7, which may be the pathway of action that initiated the pathological changes in normal mice. (5) We identified a causal relationship between common differentially expressed OTUs and PE&AFWE and UC in the pre- and post-PE&AFWE-treated groups. Thereby, we learned that PE&AFWE can directly affect OTU90, after which it inhibits UC, inhibiting the activity of arachidonic acid metabolic pathway by affecting OTU118, which in turn inhibits the colonization of gut microbiota by OTU93 and OTU7. (6) Histopathological observation and scoring (HS) of the colon showed that there was a significant difference between the model group and the control group (p < 0.001), and that there was a significant recovery in both the sulfasalazine (SASP)and the PE&AFWE groups after the administration of the drug (p < 0.0001). CONCLUSION We demonstrated causal effects and inflammatory metabolic pathways in gut microbiota dysbiosis and IBD, with five opportunistic pathogens directly contributing to IBD. PE&AFWE reduced the abundance of proteobacteria in the gut microbiota, and histopathology showed significant improvement.
Collapse
Affiliation(s)
- Qianhui Fu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Xiaoqin Ma
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Shuchun Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Mengni Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Tianyuan Song
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Jian Cui
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| |
Collapse
|
4
|
Peng J, Liu T, Meng P, Luo Y, Zhu S, Wang Y, Ma M, Han J, Zhou J, Su X, Li S, Ho CT, Lu C. Gallic acid ameliorates colitis by trapping deleterious metabolite ammonia and improving gut microbiota dysbiosis. mBio 2024; 15:e0275223. [PMID: 38126747 PMCID: PMC10865988 DOI: 10.1128/mbio.02752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.
Collapse
Affiliation(s)
- Jie Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Siyue Zhu
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huangang, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Sheikh IA, Bianchi-Smak J, Laubitz D, Schiro G, Midura-Kiela MT, Besselsen DG, Vedantam G, Jarmakiewicz S, Filip R, Ghishan FK, Gao N, Kiela PR. Transplant of microbiota from Crohn's disease patients to germ-free mice results in colitis. Gut Microbes 2024; 16:2333483. [PMID: 38532703 PMCID: PMC10978031 DOI: 10.1080/19490976.2024.2333483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Laubitz
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Gabriele Schiro
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Monica T. Midura-Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - David G. Besselsen
- Pediatrics, University Animal Care, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sara Jarmakiewicz
- Institute of Health Sciences, Medical College of Rzeszow, Rzeszow University, Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital, Rzeszow, Poland
| | - Fayez K. Ghishan
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Pawel R. Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Feng S, Wan Q, Wu W, Zhang C, Lu H, Lu X. Effect of gut microbiome regulated Taohong Siwu Decoction metabolism on glioma cell phenotype. Front Cell Infect Microbiol 2023; 13:1192589. [PMID: 37342242 PMCID: PMC10277651 DOI: 10.3389/fcimb.2023.1192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction To establish a new model for exploring the mechanism of the gut microbiome and drug metabolism, we explored whether Taohong Siwu Decoction acts after metabolism by intestinal flora under the premise of clarifying the interaction between intestinal flora and drug metabolism. Methods Taohong Siwu Decoction (TSD) was fed to germ-free mice and conventional mice, respectively. The serum from both groups of mice was removed and co-cultured with glioma cells in vitro. The co-cultured glioma cells were compared separately for changes at the RNA level using RNA-seq technology. The genes of interest in the comparison results were selected for validation. Results The differences in the phenotypic alterations of glioma cells between serum from TSD-fed germ-free mice and normal mice were statistically significant. In vitro experiments showed that Taohong Siwu Decoction-fed normal mouse serum-stimulated glioma cells, which inhibited proliferation and increased autophagy. RNA-seq analysis showed that TSD-fed normal mouse serum could regulate CDC6 pathway activity in glioma cells. The therapeutic effect of TSD is significantly influenced by intestinal flora. Conclusion The treatment of tumors by TSD may be modulated by intestinal flora. We established a new method to quantify the relationship between intestinal flora and the regulation of TSD efficacy through this study.
Collapse
Affiliation(s)
- Suyin Feng
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Quan Wan
- Jiangnan University Medical Center, Wuxi, China
| | - Weijiang Wu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chenyang Zhang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Integrative Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Wuxi Neurological Institute, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
7
|
Liu C, Song C, Wang Y, Xiao Y, Zhou Z, Cao G, Sun X, Liu Y. Deep-fried Atractylodes lancea rhizome alleviates spleen deficiency diarrhea-induced short-chain fatty acid metabolic disorder in mice by remodeling the intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115967. [PMID: 36442762 DOI: 10.1016/j.jep.2022.115967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodes lancea (Thunb.) DC. is a Chinese herb that has been commonly used to treat spleen-deficiency diarrhea (SDD) in China for over a thousand years. However, the underlying mechanism of its antidiarrheal activity is not fully understood. AIM OF THE STUDY The antidiarrheal effects of the ethanol extract of deep-fried A. lancea rhizome (EEDAR) due to spleen deficiency induced by folium sennae (SE) were determined on the regulation of the short-chain fatty acid (SCFA) metabonomics induced by the intestinal flora. MATERIALS AND METHODS The effects of EEDAR on a SE-induced mouse model of SDD were evaluated by monitoring the animal weight, fecal water content, diarrhea-grade rating, goblet cell loss, and pathological changes in the colon. The expression of inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, IL-6, IL-10), aquaporins (AQP3, AQP4, and AQP8), and tight junction markers (ZO-1, occludin, claudin-1) in colon tissues were determined using quantitative polymerase chain reaction and western blotting. SCFA metabonomics in the feces of mice treated with EEDAR was evaluated using gas chromatography-mass spectrometry. Furthermore, 16S rDNA sequencing was used to determine the effect of EEDAR on the intestinal flora of SDD mice, and fecal microbiota transplantation (FMT) was used to confirm whether the intestinal flora was essential for the anti-SDD effect of EEDAR. RESULTS Treatment with EEDAR significantly improved the symptoms of mice with SDD by inhibiting the loss of colonic cup cells, alleviating colitis, and promoting the expression of AQPs and tight junction markers. More importantly, the effect of EEDAR on the increase of SCFA content in mice with SDD was closely related to the gut microbiota composition. EEDAR intervention did not significantly improve intestinal inflammation or the barrier of germ-free SDD mice, but FMT was effective. CONCLUSION EEDAR alleviated SE-induced SDD in mice, as well as the induced SCFA disorder by regulating the imbalance of the intestinal microbiota.
Collapse
Affiliation(s)
- Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chengcheng Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Xiongjie Sun
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| |
Collapse
|
8
|
Li K, Feng C, Chen H, Feng Y, Li J. Trends in Worldwide Research in Inflammatory Bowel Disease Over the Period 2012–2021: A Bibliometric Study. Front Med (Lausanne) 2022; 9:880553. [PMID: 35665364 PMCID: PMC9160461 DOI: 10.3389/fmed.2022.880553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a continuously increasing and worldwide disease, and the number of publications of IBD has been expanding in the past 10 years. The purpose of this study is to analyze the published articles of IBD in the past decade via machine learning and text analysis and get a more comprehensive understanding of the research trends and changes in IBD in the past 10 years. Method In November 2021, we downloaded the published articles related to IBD in PubMed for the past 10 years (2012–2021). We utilized Python to extract the title, publication date, MeSH terms, and abstract from the metadata of each publication for bibliometric assessment. Latent Dirichlet allocation (LDA) was used to the abstracts to identify publications' research topics with greater specificity. Result We finally identified and analyzed 34,458 publications in total. We found that publications in the last 10 years were mainly focused on treatment and mechanism. Among them, publications on biological agents and Gastrointestinal Microbiome have a significant advantage in terms of volume and rate of publications. In addition, publications related to IBD and coronavirus disease 2019 (COVID-19) have increased sharply since the outbreak of the worldwide pandemic caused by novel β-coronavirus in 2019. However, researchers seem to pay less attention to the nutritional and psychological status of patients with IBD. Conclusion IBD is still a worldwide disease of concern with the publication of IBD-related research has expanded continuously over the past decade. More research related nutritional and psychological status of patients with IBD is needed in the future. Besides, it is worth noting that the management of chronic diseases such as IBD required additional attention during an infectious disease epidemic.
Collapse
Affiliation(s)
- Kemin Li
- Department of Gastroenterology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenzhe Feng
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
- Department of Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Haolin Chen
- Department of Mathematics, University of California, Davis, Davis, CA, United States
| | - Yeqian Feng
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jingnan Li
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Yeqian Feng
| |
Collapse
|
9
|
Eindor-Abarbanel A, Healey GR, Jacobson K. Therapeutic Advances in Gut Microbiome Modulation in Patients with Inflammatory Bowel Disease from Pediatrics to Adulthood. Int J Mol Sci 2021; 22:ijms222212506. [PMID: 34830388 PMCID: PMC8622771 DOI: 10.3390/ijms222212506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is mounting evidence that the gut microbiota plays an important role in the pathogenesis of inflammatory bowel disease (IBD). For the past decade, high throughput sequencing-based gut microbiome research has identified characteristic shifts in the composition of the intestinal microbiota in patients with IBD, suggesting that IBD results from alterations in the interactions between intestinal microbes and the host’s mucosal immune system. These studies have been the impetus for the development of new therapeutic approaches targeting the gut microbiome, such as nutritional therapies, probiotics, fecal microbiota transplant and beneficial metabolic derivatives. Innovative technologies can further our understanding of the role the microbiome plays as well as help to evaluate how the different approaches in microbiome modulation impact clinical responses in adult and pediatric patients. In this review, we highlight important microbiome studies in patients with IBD and their response to different microbiome modulation therapies, and describe the differences in therapeutic response between pediatric and adult patient cohorts.
Collapse
Affiliation(s)
- Adi Eindor-Abarbanel
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Yitzhak Shamir Medical Center, Affiliated to Tel Aviv University, Beer-Yaakov 7033001, Israel
| | - Genelle R. Healey
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kevan Jacobson
- Department of Pediatrics, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada; (A.E.-A.); (G.R.H.)
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia’s Children’s Hospital, Vancouver, BC V6H 3N1, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
10
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|