1
|
He X, Ren E, Dong L, Yuan P, Zhu J, Liu D, Wang J. Contribution of PKS+ Escherichia coli to colon carcinogenesis through the inhibition of exosomal miR-885-5p. Heliyon 2024; 10:e37346. [PMID: 39315148 PMCID: PMC11417213 DOI: 10.1016/j.heliyon.2024.e37346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives About 90 % of all colorectal cancer (CRC) fatalities are caused by the metastatic spread of primary tumors, which is closely correlated with patient survival and spreads by circulating tumor cells (CTCs). The epithelial-mesenchymal transition (EMT) that characterizes CTCs is associated with a poor prognosis. Organotropic metastasis is dictated by the transmission of miRNAs by cancer-derived exosomes. The purpose of this research is to examine PKS + E's function. Coli in CRC metastases and exosomal miR-885-5p suppression. Methods A cohort of 100 patients (50 CRC, 50 healthy) underwent colonoscopy screenings from February 2018 to August 2021. Exosomes were isolated using ultracentrifugation, and exosomal miRNA was analyzed using sequencing and qPCR. Results Among the patients, 40 tested positive for E. coli (12 CRC, 23 healthy). Serotyping revealed that 68.57 % harbored the PKS gene. Exosomal miR-885-5p levels were significantly altered in CRC patients with PKS + E. coli. Intriguingly, our findings indicate that exosomes derived from EMT-CRC cells did not affect miR-885-5p synthesis in HUVECs. Moreover, we observed that the levels of miR-885-5p in both exosomes and the total CRC-conditioned medium were comparable upon isolation of exosomes from CRC cells. What's more, an increased expression of miR-558-5p within the tumors, and the group that received exosome treatment, as well as the EMT-HCT116 group, exhibited a higher occurrence of distant metastasis. Conclusion PKS + E. By inhibiting exosomal miR-885-5p, coli is linked to CRC metastases, offering a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoming He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Enbo Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lujia Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaxin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jianguang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
2
|
Yang M, Zheng X, Fan J, Cheng W, Yan T, Lai Y, Zhang N, Lu Y, Qi J, Huo Z, Xu Z, Huang J, Jiao Y, Liu B, Pang R, Zhong X, Huang S, Luo G, Lee G, Jobin C, Eren AM, Chang EB, Wei H, Pan T, Wang X. Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m 6A Epitranscriptome via Bile Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307981. [PMID: 38713722 PMCID: PMC11267274 DOI: 10.1002/advs.202307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.
Collapse
Affiliation(s)
- Meng Yang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Xiaoqi Zheng
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiajun Fan
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Wei Cheng
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tong‐Meng Yan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacau999078China
| | - Yushan Lai
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Nianping Zhang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yi Lu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiali Qi
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zhengyi Huo
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zihe Xu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jia Huang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yuting Jiao
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Biaodi Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and HealthState Key Laboratory of Applied Microbiology Southern ChinaInstitute of MicrobiologyGuangdong Academy of SciencesGuangzhou510070China
| | - Xiang Zhong
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shi Huang
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Guan‐Zheng Luo
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Gina Lee
- Department of Microbiology and Molecular GeneticsChao Family Comprehensive Cancer CenterUniversity of California Irvine School of MedicineIrvineCA92697USA
| | - Christian Jobin
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFL32610USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity26129OldenburgGermany
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of Oldenburg26129OldenburgGermany
| | - Eugene B Chang
- Department of MedicineKnapp Center for Biomedical DiscoveryThe University of Chicago Knapp Center for Biomedical DiscoveryChicagoIL60637USA
| | - Hong Wei
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tao Pan
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Xiaoyun Wang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
4
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Desai S. Influence of pathogens on host genome and epigenome in development of head and neck cancer. Cancer Rep (Hoboken) 2023; 6:e1846. [PMID: 37322598 PMCID: PMC10644332 DOI: 10.1002/cnr2.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNSCC) is a heterogeneous group of cancers, affecting multiple regions such as oral cavity, pharynx, larynx, and nasal region, each showing a distinct molecular profile. HNSCC accounts for more than 6 million cases worldwide, soaring mainly in the developing countries. RECENT FINDINGS The aetiology of HNSCC is complex and multifactorial, involving both genetic and environmental factors. The critical role of microbiome, which includes bacteria, viruses, and fungi, is under spotlight due to the recent reports on their contribution in the development and progression of HNSCC. This review focuses on the effect of opportunistic pathogens on the host genome and epigenome, which contributes to the disease progression. Drawing parallels from the host-pathogen interactions observed in other tumour types arising from the epithelial tissue such as colorectal cancer, the review also calls attention to the potential explorations of the role of pathogens in HNSCC biology and discusses the clinical implications of microbiome research in detection and treatment of HNSCC. CONCLUSION Our understanding of the genomic effects of the microbes on the disease progression and the mechanistic insights of the host-pathogen interaction will pave way to novel treatment and preventive approaches in HNSCC.
Collapse
|
6
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Veysari SK, Asghari M, Farshad F, Hodjat M. Epigenetic changes underlie the association between diabetes mellitus and oral diseases. Mol Biol Rep 2023; 50:6987-6996. [PMID: 37378745 DOI: 10.1007/s11033-023-08574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Patients with diabetes mellitus (DM) suffer from oral complications related to oral infections, periodontal diseases, and endodontic lesions. Emerging evidence has revealed the contribution of the epigenetic process as the underlying mechanism of DM complications. DNA methylation, histone modifications, and non-coding RNAs are epigenetic regulators that directly affect gene expression. The present review elaborated on the role of epigenetic dysregulation in the etiology of diabetes-related periodontal and endodontic diseases. The narrative review study was prepared using databases such as PubMed, Google Scholar, Science Direct, and Scopus. The formation of glycation products as a result of hyperglycemic condition increases oxidative stress, and elevates chronic inflammatory mediators that could in turn adversely change the cellular environment and alter the epigenetic status. This process contributes to the alteration of regulatory genes expression, leading to the development of diabetes-induced bone complications and impaired odontogenic capacity of pulp. Indeed, epigenetic mechanisms mediate the interaction between gene expression and DM cellular environment. Further investigations on epigenetic factors involved in DM oral complications may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Setareh Kazemi Veysari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mona Asghari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Fatemeh Farshad
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran.
| |
Collapse
|
8
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
9
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
|
10
|
LINC00339: An emerging major player in cancer and metabolic diseases. Biomed Pharmacother 2022; 149:112788. [PMID: 35276468 DOI: 10.1016/j.biopha.2022.112788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a series of RNA molecules without ability to code proteins. LncRNAs have emerged as significant players in almost all aspects of gene function and regulation and play crucial roles in many human diseases. Particular lncRNAs are deemed to be promising molecular biomarkers used for diagnosing diseases and determining patient prognoses and treatment efficacies. LINC00339 is a new budding lncRNA and much of evidence shows that it is abnormally expressed in multifarious diseases, including endometriosis, cardiomyocyte apoptosis, osteoporosis, digestive-system tumors, respiratory-system tumors, nervous-system tumors, and diseases involving other systems. Additionally, LINC00339 is remarkably associated with different clinical features, such as tumor size, TNM stage, and pathological grade. LINC00339 expression has been proved to upregulate in the aforementioned diseases and has been identified to promote disease occurrence and development. It is also reported that LINC00339 is associated with various cellular events, such as tumor cell proliferation, motility and invasiveness, the expression has also been proved that it is closely related to clinical symptoms in cancer patients. This review summarizes the relationships among expression levels, biological features, clinical symptoms, and regulatory mechanisms of LINC00339 in several diseases and discusses the clinical applications of LINC00339 as a cancer diagnostic, prognostic and treatment efficacy biomarker.
Collapse
|
11
|
Sobhani I. DNA Methylation Is a Main Key for Bacteria-Related Colon Carcinogenesis. Microorganisms 2021; 9:microorganisms9122574. [PMID: 34946175 PMCID: PMC8707774 DOI: 10.3390/microorganisms9122574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined [...].
Collapse
Affiliation(s)
- Iradj Sobhani
- Department of Gastroenterology Henri Mondor Hospital APHP, 94010 Créteil, France;
- EC2M3-EA7375, Université Paris-Est Créteil, 94010 Créteil, France
| |
Collapse
|
12
|
Somatic Hypomethylation of Pericentromeric SST1 Repeats and Tetraploidization in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13215353. [PMID: 34771515 PMCID: PMC8582499 DOI: 10.3390/cancers13215353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Somatic DNA hypomethylation and aneuploidy are hallmarks of cancer, and there is evidence for a causal relationship between them in knockout mice but not in human cancer. The non-mobile pericentromeric repetitive elements SST1 are hypomethylated in about 17% of human colorectal cancers (CRC) with some 5-7% exhibiting strong age-independent demethylation. We studied the frequency of genome doubling, a common event in solid tumors linked to aneuploidy, in randomly selected single cell clones of near-diploid LS174T human CRC cells differing in their level of SST1 demethylation. Near-diploid LS174T cells underwent frequent genome-doubling events generating near-tetraploid clones with lower levels of SST1 methylation. In primary CRC, strong SST1 hypomethylation was significantly associated with global genomic hypomethylation and mutations in TP53. This work uncovers the association of the naturally occurring demethylation of the SST1 pericentromeric repeat with the onset of spontaneous tetraploidization in human CRC cells in culture and with TP53 mutations in primary CRCs. Altogether, our findings provide further support for an oncogenic pathway linking somatic hypomethylation and genetic copy number alterations in a subset of human CRC.
Collapse
|