1
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
2
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li L, Zhou R, Sun L. Application of Theiler's murine encephalomyelitis virus in treatment of multiple sclerosis. Front Microbiol 2024; 15:1415365. [PMID: 38989030 PMCID: PMC11233754 DOI: 10.3389/fmicb.2024.1415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Rui Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024. [PMID: 38817090 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | - William J Doyle
- Department of Biological Sciences, Boise State University, ID, USA
| | - Kristina Hill
- Department of Biological Sciences, Boise State University, ID, USA
| | | |
Collapse
|
5
|
Beltrán-Velasco AI, Reiriz M, Uceda S, Echeverry-Alzate V. Lactiplantibacillus (Lactobacillus) plantarum as a Complementary Treatment to Improve Symptomatology in Neurodegenerative Disease: A Systematic Review of Open Access Literature. Int J Mol Sci 2024; 25:3010. [PMID: 38474254 PMCID: PMC10931784 DOI: 10.3390/ijms25053010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
This systematic review addresses the use of Lactiplantibacillus (Lactobacillus) plantarum in the symptomatological intervention of neurodegenerative disease. The existence of gut microbiota dysbiosis has been associated with systemic inflammatory processes present in neurodegenerative disease, creating the opportunity for new treatment strategies. This involves modifying the strains that constitute the gut microbiota to enhance synaptic function through the gut-brain axis. Recent studies have evaluated the beneficial effects of the use of Lactiplantibacillus plantarum on motor and cognitive symptomatology, alone or in combination. This systematic review includes 20 research articles (n = 3 in human and n = 17 in animal models). The main result of this research was that the use of Lactiplantibacillus plantarum alone or in combination produced improvements in symptomatology related to neurodegenerative disease. However, one of the studies included reported negative effects after the administration of Lactiplantibacillus plantarum. This systematic review provides current and relevant information about the use of this probiotic in pathologies that present neurodegenerative processes such as Alzheimer's disease, Parkinson's disease and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | - Sara Uceda
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| | - Víctor Echeverry-Alzate
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| |
Collapse
|
6
|
Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q, Tian F, Chen W. Nonylphenol induces depressive behavior in rats and affects gut microbiota: A dose-dependent effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123357. [PMID: 38228262 DOI: 10.1016/j.envpol.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor absorbed through food intake, was investigated in this study for its potential dose-response relationship with the manifestation of depression-like behavior in rats. Based on this, the mechanisms of NP-induced depressive behavior, encompassing neurotransmitters, gut barrier function, inflammatory response, gut microbiota composition and metabolites were further explored. At medium and high NP doses, both mRNA and protein levels of zonula occludens protein-1 and claudin-1 were considerably downregulated, concomitant with an elevation in tumor necrosis factor-α and interleukin-1β expression in a dose-dependent effect, resulting in damage to the gut mucosa. Despite a minimal impact on behavior and gut barriers at low NP doses, alterations in gut microbiota composition were observed. During NP exposure, dose-dependent changes in the gut microbiota revealed a decline in microbial diversity linked to the synthesis of short-chain fatty acids. NP not only adversely affected the gut microbiota structure but also exacerbated central nervous system damage through the gut-brain axis. The accumulation of NP may cause neurotransmitter disturbances and inflammatory responses in the hippocampus, which also exacerbate depressed behavior in rats. Therefore, NP could exacerbate the inflammatory response in the hippocampus and colon by compromising intestinal barrier integrity, facilitating the proliferation of pathogenic bacteria, impairing butyrate metabolism, and perturbing neurotransmitter homeostasis, thus aggravating the depressive behavior of rats. It is noteworthy that the changes in these indicators were related to the NP exposure dose.
Collapse
Affiliation(s)
- Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Xue F, He Z, Zhuang DZ, Lin F. The influence of gut microbiota on circulating inflammatory cytokines and host: A Mendelian randomization study with meta-analysis. Life Sci 2023; 332:122105. [PMID: 37739166 DOI: 10.1016/j.lfs.2023.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
AIMS The gut microbiota has been found to be altered in different inflammatory disorders, but its involvement in the regulation of inflammatory cytokines remains unclear. Therefore, this study aimed to investigate the impacts of gut microbiota on circulating inflammatory cytokines and their potential roles in host diseases. MAIN METHODS Two-sample Mendelian randomization (MR) analyses were conducted using summary-level data from genome-wide association studies (GWAS) to identify significant causal associations between 196 gut microbiota and 41 inflammatory cytokines. Meta-analysis was applied to test the robustness of the results. Enrichment analyses of identified cytokines were further utilized to infer the effects of gut microbiota on the host. KEY FINDINGS The MR analyses and meta-analyses identified the following significant causal associations: phylum Euryarchaeota on interleukin-2 (IL-2) (βIVW = 0.085, P = 1.5 × 10-2) and interleukin-8 (IL-8) (βIVW = 0.065, P = 4.1 × 10-2), phylum Tenericutes and class Mollicutes on macrophage inflammatory protein 1a (MIP1a) (βIVW = -0.142, P = 7.0 × 10-3), class Bacilli on hepatocyte growth factor (HGF) (βIVW = -0.106, P = 2.5 × 10-2), order Enterobacteriales on monocyte chemoattractant protein-1 (MCP1) (βIVW = 0.182, P = 1.8 × 10-2), and genus Lachnospiraceae NC2004 group on TNF-related apoptosis-inducing ligand (TRAIL) (βIVW = -0.207, P = 6.0 × 10-4). Enrichment analyses suggested that phylum Euryarchaeota and order Enterobacteriales might be risk factors for certain autoimmune diseases and neoplasms, while the phylum Tenericutes may have a protective effect. SIGNIFICANCE This study represents the first evidence confirming the causal effect of specific gut microbial taxa on circulating inflammatory cytokines and sheds light on their potential roles in the development and progression of various host diseases.
Collapse
Affiliation(s)
- Fan Xue
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Zheng He
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| | - De-Zheng Zhuang
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Feng Lin
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China.
| |
Collapse
|
9
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
10
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wang C, Bai J, Chen X, Song J, Zhang Y, Wang H, Suo H. Gut microbiome-based strategies for host health and disease. Crit Rev Food Sci Nutr 2023; 64:6834-6849. [PMID: 36803092 DOI: 10.1080/10408398.2023.2176464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Host health and disease are influenced by changes in the abundance and structure of intestinal flora. Current strategies are focused on regulating the structure of intestinal flora to ensure host health by alleviating disease. However, these strategies are limited by multiple factors, such as host genotype, physiology (microbiome, immunity, and gender), intervention, and diet. Accordingly, we reviewed the prospects and limitations of all strategies regulating the structure and abundance of microflora, including probiotics, prebiotics, diet, fecal microbiota transplantation, antibiotics, and phages. Some new technologies that can improve these strategies are also introduced. Compared with other strategies, diets and prebiotics are associated with reduced risk and high security. Besides, phages have the potential for application in the targeted regulation of intestinal microbiota due to their high specificity. Notably, the variability in individual microflora and their metabolic response to different interventions should be considered. Future studies should use artificial intelligence combined with multi-omics to investigate the host genome and physiology based on factors, such as blood type, dietary habits, and exercise, in order to develop individualized intervention strategies to improve host health.
Collapse
Affiliation(s)
- Chen Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
15
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
16
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
17
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
18
|
Shahi SK, Yadav M, Ghimire S, Mangalam AK. Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:185-215. [PMID: 36427955 DOI: 10.1016/bs.irn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS that affects around one million people in the United States. Predisposition or protection from this disease is linked with both genetic and environmental factors. In recent years, gut microbiome has emerged as an important environmental factor in the pathobiology of MS. The gut microbiome supports various physiologic functions, including the development and maintenance of the host immune system, the perturbation of which is known as dysbiosis and has been linked with multiple diseases including MS. We and others have shown that people with MS (PwMS) have gut dysbiosis that is characterized by specific gut bacteria being enriched or depleted. Consequently, there is an emphasis on determining the mechanism(s) through which gut bacteria and/or their metabolites alter the course of MS through their ability to provide protection, predispose individuals, or promote disease progression. Improving our understanding of these mechanisms will allow us to harness the enormous potential of the gut microbiome as a diagnostic and/or therapeutic agent. In this chapter, we will discuss current advances in microbiome research in the context of MS, including a review of specific bacteria that are currently linked with this disease, potential mechanisms of disease pathogenesis, and the utility of microbiome-based therapy for PwMS.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States.
| |
Collapse
|
19
|
Bacterial variation in the oral microbiota in multiple sclerosis patients. PLoS One 2021; 16:e0260384. [PMID: 34847159 PMCID: PMC8631616 DOI: 10.1371/journal.pone.0260384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microorganisms in oral cavity are called oral microbiota, while microbiome consists of total genome content of microorganisms in a host. Interaction between host and microorganisms is important in nervous system development and nervous diseases such as Autism, Alzheimer, Parkinson and Multiple Sclerosis (MS). Bacterial infections, as an environmental factor in MS pathogenesis play role in T helper 17(Th17) increase and it enhancing the production of pro-inflammatory cytokines such as Interlukin-21(IL-21), IL-17 and IL -22. Oral microbiota consists diverse populations of cultivable and uncultivable bacterial species. Denaturing gradient gel electrophoresis (DGGE) is an acceptable method for identification of uncultivable bacteria. In this study, we compared the bacterial population diversity in the oral cavity between MS and healthy people. METHODS From October to March 2019, samples were taken at Kermanshah University of Medical Sciences' MS patients center. A total of 30 samples were taken from MS patients and another 30 samples were taken from healthy people. Phenotypic tests were used to identify bacteria after pure cultures were obtained. DNA was extracted from 1 mL of saliva, and PCR products produced with primers were electrophoresed on polyacrylamide gels. RESULTS The genera Staphylococcus, Actinomyces, Fusobacterium, Bacteroides, Porphyromonas, Prevotella, Veillonella, Propionibacterium and uncultivable bacteria with accession number MW880919-25, JQ477416.1, KF074888.1 and several other un-culturable strains were significantly more abundant in the MS group while Lactobacillus and Peptostreptococcus were more prevalent in the normal healthy group according to logistic regression method. CONCLUSION Oral micro-organisms may alleviate or exacerbate inflammatory condition which impact MS disease pathogenesis. It may be assumed that controlling oral infections may result in reduction of MS disease progression.
Collapse
|
20
|
Mirashrafi S, Hejazi Taghanaki SZ, Sarlak F, Moravejolahkami AR, Hojjati Kermani MA, Haratian M. Effect of probiotics supplementation on disease progression, depression, general health, and anthropometric measurements in relapsing-remitting multiple sclerosis patients: A systematic review and meta-analysis of clinical trials. Int J Clin Pract 2021; 75:e14724. [PMID: 34379879 DOI: 10.1111/ijcp.14724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Probiotics may have a promising role in chronic autoinflammatory diseases. The current systematic review and meta-analysis investigated the effects of probiotics on disease progression, depression, general health, and anthropometric measurements in Relapsing-Remitting Multiple Sclerosis (RRMS) patients. METHODS The English literature search was performed using PubMed, Scopus, Web of Science, and the Central Cochrane Library through January 2021. Random effect models were used to synthesise quantitative data by STATA14 . RESULTS From a total of 152 identified entries, four trials were included in quantitative synthesis (n = 213; 106 as intervention, 107 as control). An additional six studies with the same structure and different markers were also systematically reviewed. The pooled effect size showed that Expanded Disability Status Scale (EDSS) (WMD = -0.43; 95% CI = -0.65, -0.20; P < .001), Beck Depression Inventory-Ⅱ (BDI-Ⅱ) (WMD = -3.22; 95% CI = -4.38, -2.06; P < .001) and General Health Questionnaire (GHQ) (WMD = -4.37; 95% CI = -6.43, -2.31; P < .001) were improved following probiotics supplementation. However, body weight and body mass index did not statistically change. CONCLUSION Our findings revealed that probiotics supplementation can improve disease progression, suppress depression, and general health in MS patients; although, further investigations may be needed.
Collapse
Affiliation(s)
- Shahrzad Mirashrafi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Zahra Hejazi Taghanaki
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Sarlak
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Haratian
- Department of Nutrition, Vice Chancellor of Health, Hamadan University of medical Sciences, Hamedan, Iran
| |
Collapse
|
21
|
Ghezzi L, Cantoni C, Pinget GV, Zhou Y, Piccio L. Targeting the gut to treat multiple sclerosis. J Clin Invest 2021; 131:e143774. [PMID: 34196310 DOI: 10.1172/jci143774] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The gut-brain axis (GBA) refers to the complex interactions between the gut microbiota and the nervous, immune, and endocrine systems, together linking brain and gut functions. Perturbations of the GBA have been reported in people with multiple sclerosis (pwMS), suggesting a possible role in disease pathogenesis and making it a potential therapeutic target. While research in the area is still in its infancy, a number of studies revealed that pwMS are more likely to exhibit altered microbiota, altered levels of short chain fatty acids and secondary bile products, and increased intestinal permeability. However, specific microbes and metabolites identified across studies and cohorts vary greatly. Small clinical and preclinical trials in pwMS and mouse models, in which microbial composition was manipulated through the use of antibiotics, fecal microbiota transplantation, and probiotic supplements, have provided promising outcomes in preventing CNS inflammation. However, results are not always consistent, and large-scale randomized controlled trials are lacking. Herein, we give an overview of how the GBA could contribute to MS pathogenesis, examine the different approaches tested to modulate the GBA, and discuss how they may impact neuroinflammation and demyelination in the CNS.
Collapse
Affiliation(s)
- Laura Ghezzi
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,University of Milan, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabriela V Pinget
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yanjiao Zhou
- Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Laura Piccio
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.,Hope Center for Neurological Disorders, Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Murdaca G, Greco M, Borro M, Gangemi S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun Rev 2021; 20:102845. [PMID: 33971339 DOI: 10.1016/j.autrev.2021.102845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Since the start of the "modern era", characterized by the increase in urbanization, a progressive attention to hygiene and autoimmune conditions has considerably grown. Although these diseases are often multifactorial, it was demonstrated that environment factors such as pollution, diet and lifestyles may play a crucial role together with genetic signature. Our research, based on the newest and most significant literature of this topic, highlights that the progressive depletion of microbes and parasites due to increased socioeconomic improvement, may lead to a derangement of immunoregulatory mechanisms. Moreover, special attention was given to the complex interplay between microbial agents, as gut microbiome, diet and vitamin D supplementation with the aim of identifying promising future therapeutic options. In conclusion, autoimmunity cannot be limited to hygiene-hypothesis, but from the point of view of precision medicine, this theory represents a fundamental element together with the study of genomics, the microbiome and proteomics, in order to understand the complex functioning of the immune system.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
23
|
Erturk-Hasdemir D, Ochoa-Repáraz J, Kasper DL, Kasper LH. Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Front Immunol 2021; 12:662807. [PMID: 34025663 PMCID: PMC8131524 DOI: 10.3389/fimmu.2021.662807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The symbiotic relationship between animals and their resident microorganisms has profound effects on host immunity. The human microbiota comprises bacteria that reside in the gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases. The gut microbiota's immunomodulatory effects extend to extraintestinal tissues, including the central nervous system (CNS). Specific symbiotic antigens responsible for inducing immunoregulation have been isolated from different bacterial species. Polysaccharide A (PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions. Studies have shown that PSA has beneficial effects in experimental disease models, including experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this review, we discuss the current understanding of the interactions between gut microbiota and the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular mechanisms responsible for the microbiota's impact on host physiology offers tremendous promise for discovering new therapies.
Collapse
Affiliation(s)
| | | | - Dennis L. Kasper
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
24
|
Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Crit Rev Food Sci Nutr 2021; 62:6225-6237. [PMID: 33724115 DOI: 10.1080/10408398.2021.1898336] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the intestinal flora in health and disease has become a research hotspot. Compared with carbohydrates and fats, proteins are metabolized primarily by microbial fermentation in the intestine. The production of protein fermentation products and metabolites depends on the composition, diversity, and metabolism of the gut microbiota. Several protein fermentation products, including indoles, phenols, polyamines, hydrogen sulfide (H2S), amines, and carnitine, are toxic. This study analyzes the relationship between high-protein diets (HPDs), the intestinal microbiota, and human health and disease. Long-term HPDs increase the risk of intestinal diseases, type 2 diabetes (T2DM), obesity, central nervous system (CNS) diseases, and cardiovascular diseases (CVD) by producing toxic metabolites in the colon, including amines, H2S, and ammonia. Short-term HPDs have little effect on the metabolism of healthy individuals under 65 years old. However, meeting the protein requirements of individuals over 65 years old using HPDs is more challenging. The adverse effects of HPDs on athletes are minimal. Natural compounds (plant extracts, whose main constituents are polysaccharides and polyphenols), prebiotics, probiotics, and regular physical exercise improve gut dysbiosis and reduce disease risk.
Collapse
Affiliation(s)
- Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wei Wu
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
25
|
Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 2021; 11:5244. [PMID: 33664396 PMCID: PMC7933417 DOI: 10.1038/s41598-021-84881-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Altered composition of gut bacteria and changes to the production of their bioactive metabolites, the short-chain fatty acids (SCFAs), have been implicated in the development of multiple sclerosis (MS). However, the immunomodulatory actions of SCFAs and intermediaries in their ability to influence MS pathogenesis are uncertain. In this study, levels of serum SCFAs were correlated with immune cell abundance and phenotype as well as with other relevant serum factors in blood samples taken at first presentation of Clinically Isolated Syndrome (CIS; an early form of MS) or MS and compared to healthy controls. There was a small but significant reduction in propionate levels in the serum of patients with CIS or MS compared with healthy controls. The frequencies of circulating T follicular regulatory cells and T follicular helper cells were significantly positively correlated with serum levels of propionate. Levels of butyrate associated positively with frequencies of IL-10-producing B-cells and negatively with frequencies of class-switched memory B-cells. TNF production by polyclonally-activated B-cells correlated negatively with acetate levels. Levels of serum SCFAs associated with changes in circulating immune cells and biomarkers implicated in the development of MS.
Collapse
|
26
|
Jiang J, Chu C, Wu C, Wang C, Zhang C, Li T, Zhai Q, Yu L, Tian F, Chen W. Efficacy of probiotics in multiple sclerosis: a systematic review of preclinical trials and meta-analysis of randomized controlled trials. Food Funct 2021; 12:2354-2377. [DOI: 10.1039/d0fo03203d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preliminary evidence shows the potential role of probiotics in ameliorating multiple sclerosis (MS); however, the effects of probiotics on MS remain unclear.
Collapse
|
27
|
Blais LL, Montgomery TL, Amiel E, Deming PB, Krementsov DN. Probiotic and commensal gut microbial therapies in multiple sclerosis and its animal models: a comprehensive review. Gut Microbes 2021; 13:1943289. [PMID: 34264791 PMCID: PMC8284149 DOI: 10.1080/19490976.2021.1943289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/04/2023] Open
Abstract
The need for alternative treatments for multiple sclerosis (MS) has triggered copious amounts of research into microbial therapies focused on manipulating the microbiota-gut-brain axis. This comprehensive review was intended to present and systematically evaluate the current clinical and preclinical evidence for various probiotic and commensal gut microbial therapies as treatments for MS, using the Bradford Hill criteria (BHC) as a multi-parameter assessment rubric. Literature searches were performed to identify a total of 37 relevant studies (6 human, 31 animal), including 28 probiotic therapy and 9 commensal therapy studies. In addition to presenting qualitative summaries of these findings, therapeutic evidence for each bacterial formulation was assessed using the BHC to generate summative scores. These scores, which encompassed study quality, replication, and other considerations, were used to rank the most promising therapies and highlight deficiencies. Several therapeutic formulations, including VSL#3, Lactobacillus paracasei, Bifidobacterium animalis, E. coli Nissle 1917, and Prevotella histicola, emerged as the most promising. In contrast, a number of other therapies were hindered by limited evidence of replicable findings and other criteria, which need to be addressed by future studies in order to harness gut microbial therapies to ultimately provide cheaper, safer, and more durable treatments for MS.
Collapse
Affiliation(s)
- Lorrie L. Blais
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Paula B. Deming
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|