1
|
Meng Z, He Q, Mu L, Feng J, Zhang F, Wu J, Zhou L, Hu Q, Tang X, Li Y. Pullulan-spermine enhance the tolerance of probiotics and immune stimulation of macrophages. Int J Biol Macromol 2024; 287:138417. [PMID: 39662548 DOI: 10.1016/j.ijbiomac.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The application of probiotics as adjunctive therapy in colorectal cancer treatment is hindered by the paucity of strains with specialized functions and the instability of their in vivo efficacy. The design of innovative and simple encapsulation strategies to enhance their stability and efficacy of probiotics has garnered substantial interest. This study investigated four Bifidobacterium longum strains from human feces for tolerance and cytotoxicity, and then synthesized a cationic polysaccharide, pullulan-spermine (PS), for probiotic encapsulation. The results indicated that the encapsulation by PS hold superior protective capacity and elevated the level of TNF-α and IL-12. In vivo studies further confirmed the retention capacity and safety of this probiotic-PS complex. Generally, this research presents an effective probiotic encapsulation strategy that could enhance macrophage immune responses, offering novel insights for probiotic-based therapies in major diseases like colon cancer treatment.
Collapse
Affiliation(s)
- Zihui Meng
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qinghui He
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Litong Mu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiaying Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fei Zhang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiayi Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qingang Hu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Xuna Tang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Yanan Li
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Shimizu Y, Hirano S, Salah M, Hoshi N, Yamashita Y, Fukumoto T, Mukumoto N, Nakaoka A, Ishihara T, Miyawaki D, Ashida H, Sasaki R. Black Soybean Seed Coat Extract Suppresses Gut Tumorigenesis by Augmenting the Production of Gut Microbiota-Derived Short-Chain Fatty Acids. Cancers (Basel) 2024; 16:3846. [PMID: 39594801 PMCID: PMC11592864 DOI: 10.3390/cancers16223846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Proanthocyanidins (PACs) from black soybean seed coat have antioxidant and anti-tumorigenic properties. We investigated the anti-tumor properties and mechanisms of action of PACs on colorectal cancer (CRC). METHODS We fed the APCmin/+ mice, which are highly susceptible to spontaneous intestinal adenoma formation, diets supplemented with or without PACs for 7 weeks and assessed adverse effects, the number and size of intestinal polyps, and the expression of pro- and anti-proliferative proteins in the intestine. The mouse gut microbiome composition was analyzed, and the concentrations of gut short-chain fatty acids (SCFAs) were quantified. We also compared CRC incidence in Tamba in Japan, where black soybean is consumed frequently, with that in the rest of Japan. RESULTS The number and size of intestinal polyps notably decreased in the PAC-fed mice. Compared with control mice, the PAC-fed mice showed lower expression of proliferation markers proliferating cell nuclear antigen and β catenin and a higher expression of the anti-inflammatory protein oligomeric mucus gel-forming. PAC supplementation increased the prevalence and concentrations of beneficial gut microbes and SCFAs, respectively. CONCLUSIONS Diet supplemented with black soybean-derived PACs could prevent CRC development in mice through gut microbiome remodeling. Regions consuming black soybeans have low CRC incidence. Notably, the incidence of CRC, breast cancer, and liver cancer was significantly lower in Tamba than in the rest of Hyogo Prefecture or Japan. Future studies should delineate the mechanisms underlying the CRC-protective effects of PACs. Nevertheless, our results demonstrate the potential of including PACs in dietary recommendations for cancer prevention.
Collapse
Affiliation(s)
- Yasuyuki Shimizu
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| | - Shunta Hirano
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
- Radiological Division, Osaka Metropolitan University Hospital, Osaka 545-8586, Japan
| | - Mohammed Salah
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
- Biochemistry Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan;
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-0013, Japan; (Y.Y.); (H.A.)
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan;
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| | - Ai Nakaoka
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| | - Takeaki Ishihara
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-0013, Japan; (Y.Y.); (H.A.)
- Faculty of Food Science and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (Y.S.); (S.H.); (N.M.); (A.N.); (T.I.); (D.M.)
| |
Collapse
|
3
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Choi J, Son D, An S, Cho E, Lim S, Lee HJ. Effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 supplementation on weight loss and gut microbiota of overweight dogs. Sci Rep 2024; 14:25446. [PMID: 39455650 PMCID: PMC11511819 DOI: 10.1038/s41598-024-75594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of obesity in dogs is increasing worldwide. This study evaluated the effects of a mixed probiotic formula on the weight, body condition score (BCS), blood metabolite profiles, and gut microbiota of overweight and obese dogs over a 12-week supplementation period to determine the anti-obesity effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3. This was a community-based, randomized study that sampled 41 overweight and obese dogs with a veterinarian-determined BCS of 6 or more. The physical activity of all the subjects was measured using a pedometer designed exclusively for dogs. The food intake was measured using the developed application. Only the treatment group received the mixed probiotic formula twice daily (3 g per dose). A significant decrease in body weight (p < 0.0001), BCS (p < 0.0001), serum TG (p < 0.0001), serum TC (p = 0.0400), and serum leptin (p = 0.0252), and a significantly increased serum adiponectin levels (p = 0.0007) were observed in the treatment group compared with the values in the control group. Microbiota analysis showed that Lactiplantibacillus increased and Erysipelatoclostridium, Staphylococcus, and Gemella decreased more significantly in the treatment group than in the control group. These results suggested that Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 may be effective in alleviating obesity in dogs.
Collapse
Grants
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
Collapse
Affiliation(s)
- Jihee Choi
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Dooheon Son
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Subin An
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Eunbee Cho
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea.
| |
Collapse
|
5
|
Zhao Y, Chen Z, Dong R, Liu Y, Zhang Y, Guo Y, Yu M, Li X, Wang J. Multiomics analysis reveals the potential mechanism of high-fat diet in dextran sulfate sodium-induced colitis mice model. Food Sci Nutr 2024; 12:8309-8323. [PMID: 39479684 PMCID: PMC11521715 DOI: 10.1002/fsn3.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is recognized as an important contributor to inflammatory bowel disease (IBD). However, the precise underlying mechanism of HFD on IBD remains elusive. This study aimed to investigate the potential mechanism by which HFD affects IBD using 16S rRNA-sequencing and RNA-seq technology. Results indicated that HFD-treated mice exhibited notable alternations in the structure and composition of the gut microbiota, with some of these alternations being associated with the pathogenesis of IBD. Analysis of the colon transcriptome revealed 11 hub genes and 7 hub pathways among control, DSS-induced colitis, and HFD + DSS-treated groups. Further analysis explores the relationship between the hub pathways and genes, as well as the hub genes and gut microbiota. Overall, the findings indicate that the impact of HFD on DSS-induced colitis may be linked to intestinal dysbiosis and specific genes such as Abca8b, Ace2, Apoa1, Apoa4, Apoc3, Aspa, Dpp4, Maob, Slc34a2, Slc7a9, and Trpm6. These results provide valuable insights for determining potential therapeutic targets for addressing HFD-induced IBD.
Collapse
Affiliation(s)
- Yuyang Zhao
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Zhimin Chen
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Ruiyi Dong
- College of Physical Education, Hunan Normal UniversityChangshaChina
| | - Yufan Liu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yixin Zhang
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yan Guo
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Meiyi Yu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Xiang Li
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Jiangbin Wang
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
6
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Wang Y, Li C, Li J, Zhang S, Zhang Q, Duan J, Guo J. Abelmoschus manihot polysaccharide fortifies intestinal mucus barrier to alleviate intestinal inflammation by modulating Akkermansia muciniphila abundance. Acta Pharm Sin B 2024; 14:3901-3915. [PMID: 39309495 PMCID: PMC11413673 DOI: 10.1016/j.apsb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 09/25/2024] Open
Abstract
The intestinal mucus barrier is an important line of defense against gut pathogens. Damage to this barrier brings bacteria into close contact with the epithelium, leading to intestinal inflammation. Therefore, its restoration is a promising strategy for alleviating intestinal inflammation. This study showed that Abelmoschus manihot polysaccharide (AMP) fortifies the intestinal mucus barrier by increasing mucus production, which plays a crucial role in the AMP-mediated amelioration of colitis. IL-10-deficient mouse models demonstrated that the effect of AMP on mucus production is dependent on IL-10. Moreover, bacterial depletion and replenishment confirmed that the effects of AMP on IL-10 secretion and mucus production were mediated by Akkermansia muciniphila. These findings suggest that plant polysaccharides fortify the intestinal mucus barrier by maintaining homeostasis in the gut microbiota. This demonstrates that targeting mucus barrier is a promising strategy for treating intestinal inflammation.
Collapse
Affiliation(s)
- Yumeng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengxi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinyu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
9
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
10
|
Martins E, Nascimento da Silva L, Carmo M. Probiotics, prebiotics, and synbiotics in childhood diarrhea. Braz J Med Biol Res 2024; 57:e13205. [PMID: 38656071 PMCID: PMC11027179 DOI: 10.1590/1414-431x2024e13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 04/26/2024] Open
Abstract
Acute diarrhea is the second leading cause of morbidity and mortality attributed to infections in children under five years of age worldwide, with 1.7 million annual estimated cases and more than 500,000 deaths. Although hydroelectrolytic replacement is the gold standard in treating diarrhea, it does not interfere with the restoration of the intestinal microbiota. Several studies have searched for an adequate alternative in restructuring intestinal homeostasis, finding that treatments based on probiotics, prebiotics, and synbiotics are effective, which made such treatments increasingly present in clinical practice by reducing illness duration with minimal side effects. However, there are still controversies regarding some unwanted reactions in patients. The diversity of strains and the peculiarities of the pathogens that cause diarrhea require further studies to develop effective protocols for prevention and treatment. Here, we provide a descriptive review of childhood diarrhea, emphasizing treatment with probiotics, prebiotics, and synbiotics.
Collapse
Affiliation(s)
- E.M.S. Martins
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brasil
| | | | - M.S. Carmo
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brasil
- Centro Universitário Dom Bosco, São Luís, MA, Brasil
| |
Collapse
|
11
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Léonard R, Pasquereau-Kotula E, Madec E, Marsac B, Mihalache A, du Merle L, Denis J, Spriet C, Sansonetti P, Dramsi S, Robbe Masselot C. Induction of intercrypt goblet cells upon bacterial infection: a promising therapeutic target to restore the mucosal barrier. Gut Microbes 2024; 16:2426609. [PMID: 39543081 PMCID: PMC11572077 DOI: 10.1080/19490976.2024.2426609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Intestinal mucins play a crucial role in the mucosal barrier, serving as the body's initial defense against microorganisms. However, how the host regulates the secretion and glycosylation of these mucins in response to bacterial invasion remains unclear. Our study demonstrates that when exposed to Streptococcus gallolyticus (SGG), a gut pathobiont, the host mucosa promptly adjusts the behavior of specialized goblet cells (GCs) located in the middle of the crypts. A subset of these cells undergoes a remodeling, becoming intercrypt goblet cells (icGCs), which do not detach from the surface but instead migrate along intercrypt spaces while secreting a mucus impermeable to bacterial pathogens. Significantly, a non-piliated SGG mutant unable to bind to mucus fails to induce icGCs, allowing its translocation through the mucosa and submucosa. Interestingly, a closely related nonpathogenic bacterium, SGM, able to bind to mucus, also triggers the differentiation of GCs into icGCs. This discovery opens new avenues for treating patients with a "leaky gut" as observed in intestinal diseases such as inflammatory bowel diseases and metabolic disorders, but also patients with a history of repeated antibiotic use. Utilizing mucus-adherent probiotics to induce icGCs represents a promising strategy for reinforcing the mucosal barrier.
Collapse
Affiliation(s)
- Renaud Léonard
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ewa Pasquereau-Kotula
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | - Edwige Madec
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benjamin Marsac
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Adriana Mihalache
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), Lille, France
| | - Laurence du Merle
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | - Jordan Denis
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, US, France
| | - Philippe Sansonetti
- Institut Pasteur, Université Paris Cité,Paris, France
- Collège de France, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Université Paris Cité, Biology of Gram-positive Pathogens Unit, Paris, France
| | | |
Collapse
|
13
|
Yang J, Wang X, Hu T, Huang H, Chen G, Jin B, Zeng G, Liu J. Entero-toxigenic Bacteroides fragilis contributes to intestinal barrier injury and colorectal cancer progression by mediating the BFT/STAT3/ZEB2 pathway. Cell Cycle 2024; 23:70-82. [PMID: 38273425 PMCID: PMC11005799 DOI: 10.1080/15384101.2024.2309005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Our previous findings confirmed the high enrichment of Bacteroides fragilis (BF) in fecal samples from patients with colorectal cancer (CRC). The intestinal mucosal barrier is the first defense of the organism against commensal flora and intestinal pathogens and is closely associated with the occurrence and development of CRC. Therefore, this study aimed to investigate the molecular mechanisms through which BF mediates intestinal barrier injury and CRC progression. SW480 cells and a Caco2 intestinal barrier model were treated with entero-toxigenic BF (ETBF), its enterotoxin (B. fragilis toxin, BFT), and non-toxigenic BF (NTBF). Cell counting kit-8, flow cytometry, wound healing and transwell assays were performed to analyze the proliferation, apoptosis, migration, and invasion of SW480 cells. Transmission electron microscopy, FITC-dextran, and transepithelial electrical resistance (TEER) were used to analyze damage in the Caco2 intestinal barrier model. The Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) animal model was established to evaluate the effect of ETBF on intestinal barrier injury and CRC progression in vivo. ETBF and BFT enhanced the viability, wound healing ratio, invasion, and EMT of SW480 cells. In addition, ETBF and BFT disrupted the tight junctions and villus structure in the intestinal barrier model, resulting in increased permeability and reduced TEER. Similarly, the expression of intestinal barrier-related proteins (MUC2, Occludin and Zo-1) was restricted by ETBF and BFT. Interestingly, the STAT3/ZEB2 axis was activated by ETBF and BFT, and treatment with Brevilin A (a STAT3 inhibitor) or knockdown of ZEB2 limited the promotional effect of ETBF and BFT on the SW480 malignant phenotype. In vivo experiments also confirmed that ETBF colonization accelerated tumor load, carcinogenesis, and intestinal mucosal barrier damage in the colorectum of the AOM/DSS animal model, and that treatment with Brevilin A alleviated these processes. ETBF-secreted BFT accelerated intestinal barrier damage and CRC by activating the STAT3/ZEB2 axis. Our findings provide new insights and perspectives for the application of ETBF in CRC treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Xue Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Tao Hu
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - He Huang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Gang Chen
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Bo Jin
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Guilin Zeng
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
- Department of Medical Oncology, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Koidl L, Gentile SA, Untersmayr E. Allergen Stability in Food Allergy: A Clinician's Perspective. Curr Allergy Asthma Rep 2023; 23:601-612. [PMID: 37665560 PMCID: PMC10506954 DOI: 10.1007/s11882-023-01107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW The globally rising food allergy prevalence is associated with the urgent need for new disease prevention methods, efficient treatment, and reliable risk assessment methods for characterization of food allergens. Due to inter-individual variations in the digestive system, food allergens are degraded to a different extent in each person. Food processing also influences allergen digestion. RECENT FINDINGS In this review, we provide an overview of the digestive system with focus on relevance for food allergy. Main food proteins causing allergic reactions are evaluated, and the combined role of food processing and digestion for allergen stability is highlighted. Finally, clinical implications of this knowledge are discussed. Recent literature shows that allergen digestibility is dependent on food processing, digestive conditions, and food matrix. Digestion affects proteins allergenicity. It is currently not possible to predict the immunogenicity of allergens solely based on protein stability.
Collapse
Affiliation(s)
- Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Kudra A, Kaźmierczak-Siedlecka K, Sobocki BK, Muszyński D, Połom J, Carbone L, Marano L, Roviello F, Kalinowski L, Stachowska E. Postbiotics in oncology: science or science fiction? Front Microbiol 2023; 14:1182547. [PMID: 37608943 PMCID: PMC10440707 DOI: 10.3389/fmicb.2023.1182547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
The gut microbiome has been increasingly understood to play a critical role in carcinogenesis and cancer disease progression. The most recent research advancements have shown that different tools of microbiota manipulation contribute to gut microbiome-immune-oncology axis modulation, offering exciting opportunities for targeted interventions aimed at improving the efficacy of established anti-cancer therapy. Postbiotics are a new entry among the biotics showing beneficial effects on human health while not requiring living cells to obtain the health effect and therefore not subjected to food safety rules for live microorganisms. Postbiotics are recently defined as the "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host" and have gradually become the focus of the scientific community. Since the beginning of research on this topic, numerous studies about postbiotics have been proven to strengthen the gut barrier, reduce inflammation, and promote antimicrobial activity. However, research on the potential application of cancer therapy is still at the early stages of its efforts to uncover all the secrets surrounding postbiotics. This review aims to increase our understanding of the anti-cancer effect of postbiotics throughout a "bibliographic journey" on the biological activity of their components, including exopolysaccharides, cell wall fragments, tryptophan metabolites, enzymes, bacterial lysates, extracellular vesicles, and short-chain fatty acids, highlighting their perspective as a new supportive therapeutic method of treatment and identifying the literature gaps where further research is needed.
Collapse
Affiliation(s)
- Anna Kudra
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Muszyński
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Połom
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Ludovico Carbone
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Marano
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Sharma T, Sirpu Natesh N, Pothuraju R, Batra SK, Rachagani S. Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes 2023; 15:2187578. [PMID: 36919486 PMCID: PMC10026936 DOI: 10.1080/19490976.2023.2187578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The human gut microbiota can be potentially disrupted due to exposure of various environmental contaminants, including pesticides. These contaminants enter into non-target species in multiple ways and cause potential health risks. The gut microbiota-derived metabolites have a significant role in maintaining the host's health by regulating metabolic homeostasis. An imbalance in this homeostasis can result in the development of various diseases and their pathogenesis. Pesticides have hazardous effects on the host's gut microbiota, which is evident in a few recent studies. Therefore, there is an urgent need to explore the effect of pesticide on gut microbiota-mediated metabolic changes in the host, which may provide a better understanding of pesticide-induced toxicity. The present review summarizes the pesticide-induced effects on gut microbiota, which in turn, induces changes in the release of their secondary metabolites that could lead to various host health effects.
Collapse
Affiliation(s)
- Tusha Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagabhishek Sirpu Natesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| |
Collapse
|
17
|
Crowe W, Pan X, Mackle J, Harris A, Hardiman G, Elliott CT, Green BD. Dietary inclusion of nitrite-containing frankfurter exacerbates colorectal cancer pathology and alters metabolism in APC min mice. NPJ Sci Food 2022; 6:60. [PMID: 36577751 PMCID: PMC9797476 DOI: 10.1038/s41538-022-00174-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the second most prevelant malignancy in Europe and diet is an important modifiable risk factor. Processed meat consumption, including meats with preservative salts such as sodium nitrite, have been implicated in CRC pathogenesis. This study investigated how the CRC pathology and metabolic status of adenomatous polyposis coli (APC) multiple intestinal neoplasia (min) mice was perturbed following 8 weeks of pork meat consumption. Dietary inclusions (15%) of either nitrite-free pork, nitrite-free sausage, or nitrite-containing sausage (frankfurter) were compared against a parallel control group (100% chow). Comprehensive studies investigated: gastrointestinal tract histology (tumours), aberrant crypt foci (ACF), mucin deplin foci (MDF), lipid peroxidation (urine and serum), faecal microbiota, and serum metabolomics (599 metabolites). After 8 weeks mice consuming the frankfurter diet had 53% more (P = 0.014) gastrointestinal tumours than control, although ACF and MDF did not differ. Urine and serum lipid peroxidation markers were 59% (P = 0.001) and 108% (P = 0.001) higher, respectively in the frankfurter group. Gut dysbiosis was evident in these mice with comparably fewer Bacteriodes and more Firmicutes. Fasting serum levels of trimethylamine N-oxide (TMAO) and numerous triglycerides were elevated. Various serum phosphotidylcholine species were decreased. These results demonstrate that nitrite-containing sausages may exaccerbate the development of CRC pathology in APCMin mice to a greater extent than nitrite-free sausages, and this is associated with greater lipid peroxidation, wide-ranging metabolic alternation and gut dysbiosis.
Collapse
Affiliation(s)
- William Crowe
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Xiaobei Pan
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - James Mackle
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Adam Harris
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Gary Hardiman
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Christopher T. Elliott
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK ,grid.412434.40000 0004 1937 1127School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120 Thailand
| | - Brian D. Green
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Biological Sciences Building, Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| |
Collapse
|
18
|
Wan X, Tou F, Zeng J, Chen X, Li S, Chen L, Zheng Z, Rao J. Integrative analysis and identification of key elements and pathways regulated by Traditional Chinese Medicine (Yiqi Sanjie formula) in colorectal cancer. Front Pharmacol 2022; 13:1090599. [PMID: 36582529 PMCID: PMC9792787 DOI: 10.3389/fphar.2022.1090599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction: The clinical efficacy of Yiqi Sanjie (YQSJ) formula in the treatment of stage III colorectal cancer (CRC) has been demonstrated. However, the underlying antitumor mechanisms remain poorly understood. Materials and methods: The aim of the present study was to comprehensively characterize the molecular and microbiota changes in colon tissues and fecal samples from CRC mice and in CRC cell lines treated with YQSJ or its main active component, peiminine. Integrative tandem mass tag-based proteomics and ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry metabolomics were used to analyze azoxymethane/dextran sulfate sodium-induced CRC mouse colon tissues. Results: The results showed that 0.8% (57/7568) of all detected tissue proteins and 3.2% (37/1141) of all detected tissue metabolites were significantly changed by YQSJ treatment, with enrichment in ten and six pathways associated with colon proteins and metabolites, respectively. The enriched pathways were related to inflammation, sphingolipid metabolism, and cholesterol metabolism. Metabolomics analysis of fecal samples from YQSJ-treated mice identified 121 altered fecal metabolites and seven enriched pathways including protein digestion and absorption pathway. 16S rRNA sequencing analysis of fecal samples indicated that YQSJ restored the CRC mouse microbiota structure by increasing the levels of beneficial bacteria such as Ruminococcus_1 and Prevotellaceae_UCG_001. In HCT-116 cells treated with peiminine, data-independent acquisition-based proteomics analysis showed that 1073 of the 7152 identified proteins were significantly altered and involved in 33 pathways including DNA damage repair, ferroptosis, and TGF-β signaling. Conclusion: The present study identified key regulatory elements (proteins/metabolites/bacteria) and pathways involved in the antitumor mechanisms of YQSJ, suggesting new potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Xianghui Wan
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Fangfang Tou
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jiquan Zeng
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Li
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lanyu Chen
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhi Zheng
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| |
Collapse
|
19
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
|
20
|
Sun L, Zhu Z, Jia X, Ying X, Wang B, Wang P, Zhang S, Yu J. The difference of human gut microbiome in colorectal cancer with and without metastases. Front Oncol 2022; 12:982744. [PMID: 36387258 PMCID: PMC9665410 DOI: 10.3389/fonc.2022.982744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
Metastasis of colorectal cancer is deemed to be closely related to the changes in the human gut microbiome. The purpose of our study is to distinguish the differences in gut microbiota between colorectal cancer with and without metastases. Firstly, this study recruited colorectal cancer patients who met the established inclusion and exclusion criteria in the Oncology Department of Zhejiang Hospital of Traditional Chinese Medicine from February 2019 to June 2019. Fresh stool samples from healthy volunteers, non-metastatic patients, and metastatic patients were collected for 16S rRNA gene sequencing, to analyze the diversity and abundance of intestinal microorganisms in each group. The results showed that the microbial composition of the control group was more aplenty than the experimental group, while the difference also happened in the Tumor and the metastases group. At the phylum level, the abundance of Bacteroidetes significantly declined in the Tumor and the metastases group, compared with the control group. At the class level, Bacilli increased in experimental groups, while its abundance in the Tumor group was significantly higher than that in the metastases group. At the order level, the Tumor group had the highest abundance of Lactobacillales, followed by the metastases group and the control group had the lowest abundance. Overall, our study showed that the composition of the flora changed with the occurrence of metastasis in colorectal cancer. Therefore, the analysis of gut microbiota can serve as a supplement biological basis for the diagnosis and treatment of metastatic colorectal cancer which may offer the potential to develop non-invasive diagnostic tests.
Collapse
Affiliation(s)
- Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangchang Ying
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Binbin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Jieru Yu, ; Shuo Zhang, ; Peipei Wang,
| |
Collapse
|
21
|
Valdes J, Gagné-Sansfaçon J, Reyes V, Armas A, Marrero G, Moyo-Muamba M, Ramanathan S, Perreault N, Ilangumaran S, Rivard N, Fortier LC, Menendez A. Defects in the expression of colonic host defense factors associate with barrier dysfunction induced by a high-fat/high-cholesterol diet. Anat Rec (Hoboken) 2022; 306:1165-1183. [PMID: 36196983 DOI: 10.1002/ar.25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022]
Abstract
The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmβ and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.
Collapse
Affiliation(s)
- Jennifer Valdes
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jessica Gagné-Sansfaçon
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anny Armas
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gisela Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mitterrand Moyo-Muamba
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
22
|
Byrd DA, Gomez M, Hogue S, Murphy G, Sampson JN, Vogtmann E, Albert P, Freedman ND, Sinha R, Loftfield E. Circulating Bile Acids and Adenoma Recurrence in the Context of Adherence to a High-Fiber, High-Fruit and Vegetable, and Low-Fat Dietary Intervention. Clin Transl Gastroenterol 2022; 13:e00533. [PMID: 36113023 PMCID: PMC9624497 DOI: 10.14309/ctg.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 08/15/2023] Open
Abstract
INTRODUCTION Diet may affect bile acid (BA) metabolism and signaling. In turn, BA concentrations may be associated with cancer risk. We investigated (i) associations of BA concentrations with adenoma recurrence and (ii) the effect of a high-fiber, high-fruit and vegetable, and low-fat dietary intervention on serum BA concentrations. METHODS The Polyp Prevention Trial is a 4-year randomized, controlled trial that investigated the effect of a high-fiber, high-fruit and vegetable, and low-fat diet on colorectal adenoma recurrence. Among 170 participants who reported adhering to the intervention and 198 comparable control arm participants, we measured 15 BAs in baseline, year 2, and year 3 serum using targeted, quantitative liquid chromatography-tandem mass spectrometry. We estimated associations of BAs with adenoma recurrence using multivariable logistic regression and the effect of the dietary intervention on BA concentrations using repeated-measures linear mixed-effects models. In a subset (N = 65), we investigated associations of BAs with 16S rRNA gene sequenced rectal tissue microbiome characteristics. RESULTS Baseline total BA concentrations were positively associated with adenoma recurrence (odds ratio Q3 vs Q1 = 2.17; 95% confidence interval = 1.19-4.04; Ptrend = 0.03). Although we found no effect of the dietary intervention on BA concentrations, pretrial dietary fiber intake was inversely associated with total baseline BAs (Spearman = -0.15; PFDR = 0.02). BA concentrations were associated with potential colorectal neoplasm-related microbiome features (lower alpha diversity and higher Bacteroides abundance). DISCUSSION Baseline circulating BAs were positively associated with adenoma recurrence. Although the dietary intervention did not modify BA concentrations, long-term fiber intake may be associated with lower concentrations of BAs that are associated with higher risk of adenoma recurrence.
Collapse
Affiliation(s)
- Doratha A. Byrd
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Division of Population Sciences, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Maria Gomez
- Division of Population Sciences, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Stephanie Hogue
- Division of Population Sciences, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Gwen Murphy
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Department of Surgery and Cancer, Cancer Screening and Prevention Research Group (CSPRG), Imperial College London, London, United Kingdom
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Paul Albert
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
23
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
24
|
Loktionov A. Colon mucus in colorectal neoplasia and beyond. World J Gastroenterol 2022; 28:4475-4492. [PMID: 36157924 PMCID: PMC9476883 DOI: 10.3748/wjg.v28.i32.4475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Little was known about mammalian colon mucus (CM) until the beginning of the 21st century. Since that time considerable progress has been made in basic research addressing CM structure and functions. Human CM is formed by two distinct layers composed of gel-forming glycosylated mucins that are permanently secreted by goblet cells of the colonic epithelium. The inner layer is dense and impenetrable for bacteria, whereas the loose outer layer provides a habitat for abundant commensal microbiota. Mucus barrier integrity is essential for preventing bacterial contact with the mucosal epithelium and maintaining homeostasis in the gut, but it can be impaired by a variety of factors, including CM-damaging switch of commensal bacteria to mucin glycan consumption due to dietary fiber deficiency. It is proven that impairments in CM structure and function can lead to colonic barrier deterioration that opens direct bacterial access to the epithelium. Bacteria-induced damage dysregulates epithelial proliferation and causes mucosal inflammatory responses that may expand to the loosened CM and eventually result in severe disorders, including colitis and neoplastic growth. Recently described formation of bacterial biofilms within the inner CM layer was shown to be associated with both inflammation and cancer. Although obvious gaps in our knowledge of human CM remain, its importance for the pathogenesis of major colorectal diseases, comprising inflammatory bowel disease and colorectal cancer, is already recognized. Continuing progress in CM exploration is likely to result in the development of a range of new useful clinical applications addressing colorectal disease diagnosis, prevention and therapy.
Collapse
|
25
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
26
|
Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The Role of Nutritional Factors in the Modulation of the Composition of the Gut Microbiota in People with Autoimmune Diabetes. Nutrients 2022; 14:2498. [PMID: 35745227 PMCID: PMC9227140 DOI: 10.3390/nu14122498] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a disease marked by oxidative stress, chronic inflammation, and the presence of autoantibodies. The gut microbiota has been shown to be involved in the alleviation of oxidative stress and inflammation as well as strengthening immunity, thus its' possible involvement in the pathogenesis of T1DM has been highlighted. The goal of the present study is to analyze information on the relationship between the structure of the intestinal microbiome and the occurrence of T1DM. The modification of the intestinal microbiota can increase the proportion of SCFA-producing bacteria, which could in turn be effective in the prevention and/or treatment of T1DM. The increased daily intake of soluble and non-soluble fibers, as well as the inclusion of pro-biotics, prebiotics, herbs, spices, and teas that are sources of phytobiotics, in the diet, could be important in improving the composition and activity of the microbiota and thus in the prevention of metabolic disorders. Understanding how the microbiota interacts with immune cells to create immune tolerance could enable the development of new therapeutic strategies for T1DM and improve the quality of life of people with T1DM.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Karolina Jachimowicz
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
27
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|
28
|
Huang C, Sun Y, Liao SR, Chen ZX, Lin HF, Shen WZ. Suppression of Berberine and Probiotics ( in vitro and in vivo) on the Growth of Colon Cancer With Modulation of Gut Microbiota and Butyrate Production. Front Microbiol 2022; 13:869931. [PMID: 35572672 PMCID: PMC9096942 DOI: 10.3389/fmicb.2022.869931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Objective An increasing number of evidence has revealed that the gut microbiome functions in immunity, inflammation, metabolism, and homeostasis and is considered to be crucial due to its balance between human health and diseases such as cancer, leading to the emergence of treatments that target intestinal microbiota. Probiotics are one of them. However, many challenges remain regarding the effects of probiotics in cancer treatment. Berberine (BBR), a natural extract of Rhizoma Coptidis and extensively used in the treatment of gastrointestinal diseases, has been found to have antitumor effects in vivo and in vitro by many recent studies, but its definite mechanisms are still unclear. This study aimed to explore the inhibitory effect of BBR and probiotics on the growth of colon cancer cells in vitro and in vivo, and the regulatory influence on the gut microbiome and butyrate production. Methods Colon cancer cell line HT29 was used to establish a xenograft model of nude mice and an in vitro model. A total of 44 nude mice and HT29 cells were divided into control, model, model + BBR, model + probiotics, and model + combination of BBR with probiotics (CBPs). Live combined Bifidobacterium, Lactobacillus, and Enterococcus powder (LCBLEP) was used as a probiotic preparation. LCBLEP was cultured in the liquid medium under anaerobic conditions (the number of viable bacteria should reach 1 × 108CFU), and the supernatant was collected, and it is called probiotic supernatant (PS). Model + BBR and model + probiotics groups were treated with BBR and LCBLEP or PS for 4 weeks in vivo or 48, 72, and 96 h in vitro, respectively. Tumor volume or cell proliferation was measured. Gut microbiota was pyrosequenced using a 16S rDNA amplicon. HDAC1 mRNA level in HT29 cells and sodium butyrate (SB) expression in the serum of mice was detected by QPCR and ELISA. Results The treatment of BBR and CBP reduced the growth of neoplasms in mice to a different extent (p > 0.05), especially at 14 days. The inhibitory effect of LCBLEP on tumor growth was more significant, especially at 11-21 days (p < 0.05). Inhibition of BBR on in vitro proliferation was concentration-dependent. The suppression of 75% probiotic supernatant (PS) on the proliferation was the most significant. The supplement of LCBLEP significantly increased the richness and evenness of the gut microbe. BBR dramatically increased the abundance of Bacteroidetes and Proteobacteria, with reduced Ruminococcus, followed by the LCBLEP. The LCBLEP reduced the relative abundance of Verrucomicrobia and Akkermansia, and the CBP also promoted the relative level of Bacteroidetes but reduced the level of Verrucomicrobia and Akkermansia. BBR and LCBLEP or CBP improved the alpha and beta diversity and significantly affected the biomarker and metabolic function of the gut microbe in nude mice with colon cancer. The level of HDAC1 mRNA was reduced in HT29 cells treated with BBR or PS (p < 0.05), the mice treated with BBR revealed a significantly increased concentration of SB in serum (p < 0.05), and the inhibitory effect of SB on the proliferation of HT29 cells was stronger than panobinostat and TSA. Conclusion Although the combination of BBR and probiotics has no advantage in inhibiting tumor growth compared with the drug alone, BBR can be used as a regulator of the intestinal microbiome similar to the probiotics by mediating the production of SB during reducing the growth of colon cancer.
Collapse
Affiliation(s)
- Chao Huang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Ying Sun
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Sheng-Rong Liao
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Zhao-Xin Chen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Han-Feng Lin
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Wei-Zeng Shen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| |
Collapse
|
29
|
Wan L, Li H, Sun G, Zhang L, Xu H, Su F, He S, Xiao F. Mutational Pattern Induced by 5-Fluorouracil and Oxaliplatin in the Gut Microbiome. Front Microbiol 2022; 13:841458. [PMID: 35572679 PMCID: PMC9101311 DOI: 10.3389/fmicb.2022.841458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chemotherapeutic agents, such as 5-fluorouracil (5-FU) and oxaliplatin (Oxi), can not only kill the cancer cell but also influence the proliferation of gut microbiota; however, the interaction between these drugs and gut microbiota remains poorly understood. In this study, we developed a powerful framework for taxonomy composition and genomic variation analysis to investigate the mutagenesis effect and proliferation influence of chemotherapeutic agents, such as 5-FU and Oxi, on gut microbiota and the interaction between these drugs and gut microbiota during chemotherapy. Using the gut microbiome data, we detected 1.45 million variations among the chemotherapy groups and found the drugs significantly affected mutation signatures of gut microbiota. Oxi notably increased transversion rate, whereas 5-FU reduced the rate. Traits related to cell division and nutrient mobilization showed evidence of strong selection pressure from chemotherapeutic agents. In addition, drug-associated bacteriome shift patterns and functional alterations were found: the metabolism changes in the 5-FU group implied that gut microbiota could provide additional nicotinamide adenine dinucleotide (NAD+) to inhibit cancer cell autophagy; in the Oxi group, the ribosome and lysine biosynthesis genes were obviously enriched. Our study provides a blueprint for characterizing the role of microbes and drug–microbe interaction in the gut microbiota response to chemotherapy.
Collapse
Affiliation(s)
- Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Hold GL, De Winter BY, Smet A. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol 2022; 7:455-471. [DOI: 10.1016/s2468-1253(21)00431-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
|
31
|
Profiling of the Bacterial Microbiota along the Murine Alimentary Tract. Int J Mol Sci 2022; 23:ijms23031783. [PMID: 35163705 PMCID: PMC8836272 DOI: 10.3390/ijms23031783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.
Collapse
|
32
|
Dokladny K, Crane JK, Kassicieh AJ, Kaper JB, Kovbasnjuk O. Cross-Talk between Probiotic Nissle 1917 and Human Colonic Epithelium Affects the Metabolite Composition and Demonstrates Host Antibacterial Effect. Metabolites 2021; 11:841. [PMID: 34940599 PMCID: PMC8706777 DOI: 10.3390/metabo11120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Colonic epithelium-commensal interactions play a very important role in human health and disease development. Colonic mucus serves as an ecologic niche for a myriad of commensals and provides a physical barrier between the epithelium and luminal content, suggesting that communication between the host and microbes occurs mainly by soluble factors. However, the composition of epithelia-derived metabolites and how the commensal flora influences them is less characterized. Here, we used mucus-producing human adult stem cell-derived colonoid monolayers exposed apically to probiotic E. coli strain Nissle 1917 to characterize the host-microbial communication via small molecules. We measured the metabolites in the media from host and bacterial monocultures and from bacteria-colonoid co-cultures. We found that colonoids secrete amino acids, organic acids, nucleosides, and polyamines, apically and basolaterally. The metabolites from host-bacteria co-cultures markedly differ from those of host cells grown alone or bacteria grown alone. Nissle 1917 affects the composition of apical and basolateral metabolites. Importantly, spermine, secreted apically by colonoids, shows antibacterial properties, and inhibits the growth of several bacterial strains. Our data demonstrate the existence of a cross-talk between luminal bacteria and human intestinal epithelium via metabolites, which might affect the numbers of physiologic processes including the composition of commensal flora via bactericidal effects.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
| | - John K. Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY 14206, USA;
| | - Alex J. Kassicieh
- University of New Mexico School of Medicine, Albuquerque, NM 87106, USA;
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Olga Kovbasnjuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|