1
|
Li K, Wei W, Xu C, Lian X, Bao J, Yang S, Wang S, Zhang X, Zheng X, Wang Y, Zhong S. Prebiotic inulin alleviates anxiety and depression-like behavior in alcohol withdrawal mice by modulating the gut microbiota and 5-HT metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156181. [PMID: 39488100 DOI: 10.1016/j.phymed.2024.156181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Alcohol dependence (AD) is a common psychiatric disorder, often accompanied by anxiety and depression. These comorbidities are linked to disturbances in serotonin (5-HT) metabolism and gut microbiota dysbiosis. Clinical studies suggest that inulin, a prebiotic, can alleviate anxiety and depression in AD patients by affecting the gut microbiota, although the mechanisms remain unclear. PURPOSE The purpose of this study is to investigate the potential mechanisms by which inulin, a prebiotic, improves anxiety and depression-like behaviors in AD withdrawal mice. This research is based on the drug and food homology and intestinal treatment of encephalopathy, with the goal of developing new clinical strategies for AD treatment. STUDY DESIGN For this purpose, fecal samples from AD patients were analyzed to identify microorganisms associated with AD. An AD withdrawal mouse model was created, with inulin as the intervention and fluvoxamine maleate as the control. Techniques such as 16S microbiome sequencing and UPLC-TQMS-targeted metabolomics were used to assess gut microbiota, short-chain fatty acids (SCFAs) levels, and 5-HT metabolism. METHODS The AD withdrawal model was built using the "Drinking-in-the-dark" protocol over 6 weeks. Inulin (2 g/kg/day) and fluvoxamine maleate (30 mg/kg/day) were administered for 4 weeks. The open field test, forced swim test, and tail suspension test were used to evaluate anxiety and depression-like behaviors in mice. ELISA and qRT-PCR assessed 5-HT metabolism in the colon, blood, and prefrontal cortex, while 16S microbiome sequencing analyzed changes in gut microbiota and UPLC-TQMS examined SCFAs levels. Immunohistochemistry was used to study intestinal barrier integrity. RESULTS AD patients showed reduced SCFA-producing bacteria such as Faecalibacterium and Roseburia. In mice, AD withdrawal led to anxiety and depression-like behaviors, disrupted 5-HT metabolism, and gut microbiota dysbiosis. Inulin supplementation alleviated these behaviors, increased 5-HT and 5-hydroxytryptophan (5-HTP) levels, upregulated colonic tryptophan hydroxylase 1 (TPH1) expression, and promoted the growth of beneficial bacteria such as Faecalibacterium and Roseburia, while also increasing SCFAs levels. CONCLUSION Inulin increases the abundance of Faecalibacterium and Roseburia, enhances SCFAs production, and regulates 5-HT metabolism, improving anxiety and depression-like behaviors in AD withdrawal mice. These findings suggest that inulin may serve as a nutritional intervention for mental health in AD patients by targeting the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jianjun Bao
- Department of Geriatric Psychiatry, The Mental Hospital of Yunnan Province, Kunming, 650224, China
| | - Shuo Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulan Zhang
- Department of Psychiatry/Alcohol Dependence Treatment, The Mental Hospital of Yunnan Province, Kunming, 650224, China
| | - Xinjian Zheng
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yue Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shurong Zhong
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; Forensic Biology Identification Laboratory, Judicial Identification Center of Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Leclercq S. Involvement of the gut microbiome-brain axis in alcohol use disorder. Alcohol Alcohol 2024; 59:agae050. [PMID: 39042929 DOI: 10.1093/alcalc/agae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The human intestine is colonized by a variety of microorganisms that influence the immune system, the metabolic response, and the nervous system, with consequences for brain function and behavior. Unbalance in this microbial ecosystem has been shown to be associated with psychiatric disorders, and altered gut microbiome composition related to bacteria, viruses, and fungi has been well established in patients with alcohol use disorder. This review describes the gut microbiome-brain communication pathways, including the ones related to the vagus nerve, the inflammatory cytokines, and the gut-derived metabolites. Finally, the potential benefits of microbiota-based therapies for the management of alcohol use disorder, such as probiotics, prebiotics, and fecal microbiota transplantation, are also discussed.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Grodin EN, Burnette EM, Rodriguez C, Fulcher JA, Ray LA. The gut microbiome in alcohol use disorder and alcohol-associated liver disease: A systematic review of clinical studies. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1221-1242. [PMID: 38719790 DOI: 10.1111/acer.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
Evidence suggests that a relationship exists between the gut microbiome and the pathogenesis of alcohol use disorder (AUD) and alcohol-associated liver disease (AALD). This systematic review identified studies that investigated the gut microbiome in individuals with an AUD or an AALD. A search was conducted on October 27, 2022, in PubMed, Web of Science, and Embase databases. Fifty studies satisfied eligibility criteria. Most studies found evidence for gut dysbiosis in individuals with AUD and AALD. Microbiome intervention studies have mostly been conducted in AALD patients; fecal microbial transplant interventions show the most promise. Because most studies were conducted cross-sectionally, the causal relationship between the gut microbiome and alcohol use is unknown. Furthermore, almost all studies have been conducted in predominantly male populations, leaving critical questions regarding sex differences and generalizability of the findings. The study summaries and recommendations provided in this review seek to identify areas for further research and to highlight potential gut microbial interventions for treating AUD and AALD.
Collapse
Affiliation(s)
- Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Elizabeth M Burnette
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Crystal Rodriguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer A Fulcher
- Division of Infectious Diseases, David Gefen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Leclercq S, de Timary P. Role of the Microbiome and the Gut-Brain Axis in Alcohol Use Disorder: Potential Implication for Treatment Development. Curr Top Behav Neurosci 2024. [PMID: 38914878 DOI: 10.1007/7854_2024_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The gut microbiota is constituted by trillions of microorganisms colonizing the human intestine. Studies conducted in patients with alcohol use disorder (AUD) have shown altered microbial composition related to bacteria, viruses, and fungi.This review describes the communication pathways between the gut and the brain, including the ones related to the bacterial metabolites, the inflammatory cytokines, and the vagus nerve. We described in more detail the gut-derived metabolites that have been shown to be implicated in AUD or that could potentially be involved in the development of AUD due to their immune and/or neuroactive properties, including tryptophan-derivatives, tyrosine-derivatives, short chain fatty acids.Finally, we discussed the potential beneficial effects of microbiome-based therapies for AUD such as probiotics, prebiotics, postbiotic, and phage therapy.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
5
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024:01515467-990000000-00873. [PMID: 38691396 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Ribera C, Sánchez-Ortí JV, Clarke G, Marx W, Mörkl S, Balanzá-Martínez V. Probiotic, prebiotic, synbiotic and fermented food supplementation in psychiatric disorders: A systematic review of clinical trials. Neurosci Biobehav Rev 2024; 158:105561. [PMID: 38280441 DOI: 10.1016/j.neubiorev.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The use of probiotics, prebiotics, synbiotics or fermented foods can modulate the gut-brain axis and constitute a potentially therapeutic intervention in psychiatric disorders. This systematic review aims to identify current evidence regarding these interventions in the treatment of patients with DSM/ICD psychiatric diagnoses. Forty-seven articles from 42 studies met the inclusion criteria. Risk of bias was assessed in all included studies. Major depression was the most studied disorder (n = 19 studies). Studies frequently focused on schizophrenia (n = 11) and bipolar disorder (n = 5) and there were limited studies in anorexia nervosa (n = 4), ADHD (n = 3), Tourette (n = 1), insomnia (n = 1), PTSD (n = 1) and generalized anxiety disorder (n = 1). Except in MDD, current evidence does not clarify the role of probiotics and prebiotics in the treatment of mental illness. Several studies point to an improvement in the immune and inflammatory profile (e.g. CRP, IL6), which may be a relevant mechanism of action of the therapeutic response identified in these studies. Future research should consider lifestyle and dietary habits of patients as possible confounders that may influence inter-individual treatment response.
Collapse
Affiliation(s)
- Carlos Ribera
- Department of Psychiatry, Hospital Clínico Universitario de Valencia, Department of Psychiatry, Blasco Ibañez 17, floor 7B, 46010 Valencia, Spain.
| | - Joan Vicent Sánchez-Ortí
- Faculty of Psychology, University of Valencia, Valencia, Spain; INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain.
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Dept of Psychiatry and Neurobehavioural Science, College Rd, 1.15 Biosciences Building, Cork, Ireland.
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, 299 Ryrie street, Geelong, VIC 3220, Australia.
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Vicent Balanzá-Martínez
- INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia. Blasco Ibañez 15, 46010 Valencia, Spain.; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; VALSME (Valencia Salut Mental i Estigma) Research Group, University of Valencia, Valencia, Spain.
| |
Collapse
|
7
|
Qu D, Bo P, Li Z, Sun Y. Effects of whole nutritional formula foods on nutritional improvement and intestinal flora in malnourished rats. Food Sci Nutr 2024; 12:1724-1735. [PMID: 38455205 PMCID: PMC10916550 DOI: 10.1002/fsn3.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
Food for special medical purposes (FSMP) has received increasing attention as an enteral nutritional supplement. To investigate the effects of whole nutritional formula (WNF) containing dietary fiber and regular formula on nutritional supplementation and improvement of intestinal microecology, a rat malnutrition model was established with the formulations of WNF, FOS, and SDF (10, 20 g/kg bw) administered by gavage for 30 days. The results showed that the three formulations effectively improved the nutritional status of the malnourished rats, significantly increasing the level of IgG, increasing the abundance of Bacteroidetes, and affecting the content of propionic acid (PRO). The nutritional status of rats is closely related to growth performance, nutritional indexes, and immunoglobulin index, which cause changes in the composition of the intestinal flora. The above results showed that WNF positively affected the nutritional improvement, immune level, and intestinal health of rats. The comprehensive evaluation also suggested that the formulation containing ginseng water-soluble dietary fiber (ginseng-SDF) had the most significant effect.
Collapse
Affiliation(s)
- Di Qu
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| | - Pan‐Pan Bo
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
- Institute of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchunJilinChina
| | - Zhi‐Man Li
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| | - Yin‐Shi Sun
- Institute of Special Animal and Plant SciencesChinese Academy of Agricultural SciencesChangchunJilinChina
| |
Collapse
|
8
|
Correa ADC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym 2024; 323:121396. [PMID: 37940290 DOI: 10.1016/j.carbpol.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Fructooligosaccharides (FOS) and inulin are the most used fructans in food manufacturing, including bakery, dairy, meat products and beverages. In this context, this review investigated the recent findings concerning health claims associated with a diet supplemented with fructans according to human trial results. Fructans have been applied in different food classes due to their proven benefits to human health. Human clinical trials have revealed several effects of fructans supplementation on health such as improved glycemic control, growth of beneficial gut bacteria, weight management, positive influence on immune function, and others. These dietary fibers have a wide range of compounds with different molecular sizes, implying a great variety of technological properties depending on the food application of interest. Inulin has been mainly applied as a fat substitute and prebiotic ingredient. In general, inulin reduces the energy content and improves the structure, viscosity, emulsion, and water retention parameters of food products. Meanwhile, FOS have been more successful when used as a sucrose substitute and prebiotic ingredient. However, overall, FOS and inulin are promising alternatives for the development of structured systems dedicated to increase the functionality of foods and beverages besides reducing fat in bakery, dairy, and meat products.
Collapse
Affiliation(s)
- Aline de Carvalho Correa
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina Savioli Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Cantu-Jungles TM, Hamaker BR. Tuning Expectations to Reality: Don't Expect Increased Gut Microbiota Diversity with Dietary Fiber. J Nutr 2023; 153:3156-3163. [PMID: 37690780 DOI: 10.1016/j.tjnut.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
Dietary approaches, particularly those including fiber supplementation, can be used to promote health benefits by shaping gut microbial communities. Whereas community diversity measures, such as richness and evenness, are often used in microbial ecology to make sense of these complex and vast microbial ecosystems, it is less clear how these concepts apply when dietary fiber supplementation is given. In this perspective, we summarize and demonstrate how factors including experimental approach, number of bacteria sharing a dietary fiber, and initial relative abundances of bacteria that use a fiber can significantly affect diversity outcomes in fiber fermentation studies. We also show that a reduction in alpha diversity is possible, and perhaps expected, for most approaches that use fermentable fibers to beneficially shape the gut microbial community while still achieving health-related improvements.
Collapse
Affiliation(s)
- Thaisa M Cantu-Jungles
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States.
| | - Bruce R Hamaker
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|
11
|
Gao Y, Zhang P, Wei Y, Ye C, Mao D, Xia D, Luo Y. Porphyromonas gingivalis exacerbates alcoholic liver disease by altering gut microbiota composition and host immune response in mice. J Clin Periodontol 2023; 50:1253-1263. [PMID: 37381658 DOI: 10.1111/jcpe.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/30/2023]
Abstract
AIM Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, increases the risk of systemic diseases. P. gingivalis infection is closely associated with alcoholic liver disease (ALD), but the underlying mechanism remains unclear. We aimed to investigate the role of P. gingivalis in the pathogenesis of ALD. MATERIALS AND METHODS An ALD mouse model was established using a Lieber-DeCarli liquid diet, and C57BL/6 mice were treated with P. gingivalis to detect the pathological indicators of ALD. RESULTS Oral administration of P. gingivalis exacerbated alcohol-induced alterations in the gut microbiota, leading to gut barrier dysfunction and inflammatory response and disruption of the T-helper 17 cell/T-regulatory cell ratio in the colon of ALD mice. Furthermore, P. gingivalis worsened liver inflammation in ALD mice by increasing the protein expression of toll-like receptor 4 (TLR4) and p65, increasing the mRNA expression of interleukins-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) and up-regulating the transforming growth factor-beta 1 (TGF-β1) and galectin-3 (Gal-3) production. CONCLUSIONS These results indicate that P. gingivalis accelerates the pathogenesis of ALD via the oral-gut-liver axis, necessitating a new treatment strategy for patients with ALD complicated by periodontitis.
Collapse
Affiliation(s)
- Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Yiming Wei
- School of Medicine, Nankai University, Tianjin, China
| | - Chaolin Ye
- School of Medicine, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Dasheng Xia
- Department of Cardiology, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Yang Y, Zhou B, Zhang S, Si L, Liu X, Li F. Prebiotics for depression: how does the gut microbiota play a role? Front Nutr 2023; 10:1206468. [PMID: 37485386 PMCID: PMC10358272 DOI: 10.3389/fnut.2023.1206468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Depression, a mood disorder characterized by persistent feelings of sadness and aversion to activity that can interfere with daily life, is a condition of great concern. Prebiotics, which are non-digestible substances selectively utilized by host microorganisms for health benefits, have gained attention for their potential to improve overall wellness and alleviate various disorders including depression. This study aims to review clinical trials utilizing carbohydrate-type prebiotics such as inulin-type fructans, galactooligosaccharides (GOS), human milk oligosaccharides, resistant starch, prebiotic phytochemicals including epigallocatechin gallate (EGCG), chlorogenic acids, resveratrol, and prebiotic lipids (n-3 polysaturated fatty acids) to determine their effects on depression. Our findings suggest that GOS at a daily dosage of 5 g and eicosapentaenoic acid at or less than 1 g can effectively mitigate depressive symptoms. While EGCG exhibits potential antidepressant properties, a higher dosage of 3 g/d may be necessary to elicit significant effects. The plausible mechanisms underlying the impact of prebiotics on depression include the synthesis of neurotransmitters, production of short-chain fatty acids, and regulation of inflammation.
Collapse
|
13
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
14
|
Qin YQ, Wang LY, Yang XY, Xu YJ, Fan G, Fan YG, Ren JN, An Q, Li X. Inulin: properties and health benefits. Food Funct 2023; 14:2948-2968. [PMID: 36876591 DOI: 10.1039/d2fo01096h] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xin-Yu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yi-Jie Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
15
|
Exploring the links between gut microbiota and excitatory and inhibitory brain processes in alcohol use disorder: A TMS study. Neuropharmacology 2023; 225:109384. [PMID: 36567005 DOI: 10.1016/j.neuropharm.2022.109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
While the impact of the gut microbiota on brain and behavior is increasingly recognized, human studies examining this question are still scarce. The primary objective of the current study was to explore the potential relationships between the gut microbiota composition, motor cortical excitability at rest and during inhibitory control, as well as behavioral inhibition, in healthy volunteers and in patients suffering from alcohol use disorder. Motor cortical excitability was examined using a range of transcranial magnetic stimulation (TMS) measures probed at rest, including the recruitment curve, short and long intracortical inhibition, and intracortical facilitation within the primary motor cortex. Moreover, TMS was applied during a choice reaction time task to assess changes in motor excitability associated with inhibitory control. Finally, behavioral inhibition was investigated using a neuropsychological task (anti-saccade). Overall, our results highlight several interesting correlations between microbial composition and brain measures. Hence, higher bacterial diversity, as well as higher relative abundances of UGC-002 and Christensenellaceae R-7 group were correlated with stronger changes in motor excitability associated with inhibitory control. Also, higher abundance of Anaerostipes was associated with higher level of corticospinal excitability. Finally, relative abundances of Bifidobacterium and Faecalibacterium were positively related to performance in the neuropsychological task, suggesting that they might have a positive impact on behavioral inhibition. Although correlation is not causation, the present study suggests that excitatory and inhibitory brain processes might be related to gut microbiota composition. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
|
16
|
Pectin in Metabolic Liver Disease. Nutrients 2022; 15:nu15010157. [PMID: 36615814 PMCID: PMC9824118 DOI: 10.3390/nu15010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Alterations in the composition of the gut microbiota (dysbiosis) are observed in nutritional liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) and have been shown to be associated with the severity of both. Editing the composition of the microbiota by fecal microbiota transfer or by application of probiotics or prebiotics/fiber in rodent models and human proof-of-concept trials of NAFLD and ALD have demonstrated its possible contribution to reducing the progression of liver damage. In this review, we address the role of a soluble fiber, pectin, in reducing the development of liver injury in NAFLD and ALD through its impact on gut bacteria.
Collapse
|
17
|
Amadieu C, Maccioni L, Leclercq S, Neyrinck AM, Delzenne NM, de Timary P, Stärkel P. Liver alterations are not improved by inulin supplementation in alcohol use disorder patients during alcohol withdrawal: A pilot randomized, double-blind, placebo-controlled study. EBioMedicine 2022; 80:104033. [PMID: 35490461 PMCID: PMC9062816 DOI: 10.1016/j.ebiom.2022.104033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background Emerging evidence highlights that targeting the gut microbiota could be an interesting approach to improve alcohol liver disease due to its important plasticity. This study aimed to evaluate the effects of inulin supplementation on liver parameters in alcohol use disorder (AUD) patients (whole sample) and in a subpopulation with early alcohol-associated liver disease (eALD). Methods Fifty AUD patients, hospitalized for a 3-week detoxification program, were enrolled in a randomized, double-blind, placebo-controlled study and assigned to prebiotic (inulin) versus placebo for 17 days. Liver damage, microbial translocation, inflammatory markers and 16S rDNA sequencing were measured at the beginning (T1) and at the end of the study (T2). Findings Compared to placebo, AST (β = 8.55, 95% CI [2.33:14.77]), ALT (β = 6.01, 95% CI [2.02:10.00]) and IL-18 (β = 113.86, 95% CI [23.02:204.71]) were statistically significantly higher in the inulin group in the whole sample at T2. In the eALD subgroup, inulin supplementation leads to specific changes in the gut microbiota, including an increase in Bifidobacterium and a decrease of Bacteroides. Despite those changes, AST (β = 14.63, 95% CI [0.91:28.35]) and ALT (β = 10.40, 95% CI [1.93:18.88]) at T2 were higher in the inulin group compared to placebo. Treatment was well tolerated without important adverse events or side effects. Interpretation This pilot study shows that 17 days of inulin supplementation versus placebo, even though it induces specific changes in the gut microbiota, did not alleviate liver damage in AUD patients. Further studies with a larger sample size and duration of supplementation with adequate monitoring of liver parameters are needed to confirm these results. Gut2Brain study: https://clinicaltrials.gov/ct2/show/NCT03803709 Funding Fédération Wallonie-Bruxelles, FRS-FNRS, Fondation Saint-Luc.
Collapse
|
18
|
Mu C, Pochakom A, Reimer RA, Choudhary A, Wang M, Rho JM, Scantlebury MH, Shearer J. Addition of Prebiotics to the Ketogenic Diet Improves Metabolic Profile but Does Not Affect Seizures in a Rodent Model of Infantile Spasms Syndrome. Nutrients 2022; 14:2210. [PMID: 35684010 PMCID: PMC9182787 DOI: 10.3390/nu14112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The ketogenic diet (KD) is an effective treatment for infantile spasms syndrome (IS). However, the KD has implications for somatic growth, development, and the gut microbiota. The impact of incorporating a prebiotic fiber (PRE, oligofructose-enriched inulin, 0.8 g/dL) into a KD diet on spasms, developmental milestones, fecal gut microbiota, metabolites, and hippocampal mitochondrial metabolism were examined. Following IS induction, animals were randomized to KD or KD + PRE diets. A third group without IS and suckled by dams was included as a normally developing reference group (R). PRE inclusion decreased ketones and increased circulating glucose levels but had no impact on spasms. In the liver, PRE increased triglyceride concentrations, decreased carnitine levels, and downregulated genes encoding enzymes responsible for ketogenesis. In the hippocampus, PRE increased glutathione levels but did not affect the maximal respiratory capacity of mitochondria. Analysis of the gut microbiota showed that KD + PRE increased microbial richness and the relative abundance of Bifidobacterium pseudolongum and Lactobacillus johnsonii. No differences in developmental milestones (i.e., surface righting, negative geotaxis, and open field behavior) were observed between KD and KD + PRE, except for ultrasonic vocalizations that were more frequent in KD + PRE. In summary, PRE did not impact spasms or developmental outcomes, but was effective in improving both metabolic parameters and gut microbiota diversity.
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
| | - Angela Pochakom
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
| | - Raylene A. Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| | - Anamika Choudhary
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Melinda Wang
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| | - Jong M. Rho
- Departments of Neurosciences, Pediatrics and Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Morris H. Scantlebury
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.P.); (R.A.R.); (J.S.)
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (A.C.); (M.W.); (M.H.S.)
| |
Collapse
|
19
|
Du Y, Li L, Gong C, Li T, Xia Y. The diversity of the intestinal microbiota in patients with alcohol use disorder and its relationship to alcohol consumption and cognition. Front Psychiatry 2022; 13:1054685. [PMID: 36620654 PMCID: PMC9814012 DOI: 10.3389/fpsyt.2022.1054685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Alcohol use disorder (AUD) has evolved into a severe social and medical issue. However, the exact environmental factors triggering AUD pathophysiology remain unknown. A growing body of research has shown that environmental elements can affect the brain via the microbiota-gut-brain axis. METHODS We employed 16S rRNA gene sequencing technology to investigate the composition and diversity of intestinal microbiota in 32 AUD males and 35 healthy controls (HCs), as well as its relationship on cognitive function. RESULTS Our findings showed that the alpha diversity indices in AUDs were much lower than HCs. The abundances of Faecalibacterium, Gemmiger, Lachnospiracea_incertae_sedis, Megamonas, and Escherichia were significantly different between AUD and HC groups and could be used as a basis for judging whether excessive drinking. The abundances of Faecalibacterium, Gemmiger, Escherichia, and Fusobacterium can be used to judge the cognitive function of the population. CONCLUSION These data suggested that the gut dysbiosis in AUD patients, and some specific microbiota were considered to be related to alcohol intake and cognitive function. This study provides important information for further study of the pathogenesis of AUD from the perspective of intestinal microbiota.
Collapse
Affiliation(s)
- Yishan Du
- Mental Health Centre, The First Affiliated Hospital of Harbin Medical University, Mental Health Institute, Harbin Medical University, Heilongjiang, Harbin, China
| | - Lin Li
- Mental Health Centre, The First Affiliated Hospital of Harbin Medical University, Mental Health Institute, Harbin Medical University, Heilongjiang, Harbin, China
| | - Chengcheng Gong
- Mental Health Centre, The First Affiliated Hospital of Harbin Medical University, Mental Health Institute, Harbin Medical University, Heilongjiang, Harbin, China
| | - Ting Li
- Mental Health Centre, The First Affiliated Hospital of Harbin Medical University, Mental Health Institute, Harbin Medical University, Heilongjiang, Harbin, China
| | - Yan Xia
- Mental Health Centre, The First Affiliated Hospital of Harbin Medical University, Mental Health Institute, Harbin Medical University, Heilongjiang, Harbin, China
| |
Collapse
|