1
|
Spangenberg P, Bessler S, Widera L, Bottek J, Richter M, Thiebes S, Siemes D, Krauß SD, Migas LG, Kasarla SS, Phapale P, Kleesiek J, Führer D, Moeller LC, Heuer H, Van de Plas R, Gunzer M, Soehnlein O, Soltwisch J, Shevchuk O, Dreisewerd K, Engel DR. msiFlow: automated workflows for reproducible and scalable multimodal mass spectrometry imaging and microscopy data analysis. Nat Commun 2025; 16:1065. [PMID: 39870624 PMCID: PMC11772593 DOI: 10.1038/s41467-024-55306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025] Open
Abstract
Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data. msiFlow integrates all necessary steps from raw data import to analytical visualisation along with state-of-the-art and self-developed algorithms into automated workflows. Using msiFlow, we unravel the molecular heterogeneity of leukocytes in infected tissues by spatial regulation of ether-linked phospholipids containing arachidonic acid. We anticipate that msiFlow will facilitate the broad applicability of MSI in multimodal imaging to uncover context-dependent cellular regulations in disease states.
Collapse
Affiliation(s)
- Philippa Spangenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | | | - Lars Widera
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Jenny Bottek
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Mathis Richter
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Stephanie Thiebes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Devon Siemes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Sascha D Krauß
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Olga Shevchuk
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | | | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.
| |
Collapse
|
2
|
Korsirikoon C, Techaniyom P, Kettawan A, Rungruang T, Metheetrairut C, Prombutara P, Kettawan AK. Cold-pressed extraction of perilla seed oil enriched with alpha-linolenic acid mitigates tumour progression and restores gut microbial homeostasis in the AOM/DSS mice model of colitis-associated colorectal cancer. PLoS One 2024; 19:e0315172. [PMID: 39652552 PMCID: PMC11627366 DOI: 10.1371/journal.pone.0315172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed. Male ICR mice, initiated at four weeks of age, were subjected to diets comprising 5%, 10%, or 20% PSO, 10% fish oil, or 5% soybean oil. All groups, with the exception of the control group (5% soybean oil), underwent induction with azoxymethane (AOM) and dextran sulphate sodium (DSS) to instigate CRC. Disease development, colon samples, preneoplastic lesions, dysplasia, and biomarkers were meticulously evaluated. Furthermore, gut microbiota composition was elucidated through 16S rRNA sequencing. The analysis revealed that PSO contained 61.32% ALA and 783.90 mg/kg tocopherols. Mice subjected to diets comprising 5% soybean or 10% fish oil exhibited higher tumour incidence, burden, multiplicity, and aberrant crypt counts. Remarkably, these parameters were significantly reduced in mice fed a 5% PSO diet. Additionally, 5% PSO-fed mice displayed reduced proliferative and pro-inflammatory markers in colon tissues, coupled with an alleviation of AOM/DSS-induced gut dysbiosis. Notably, PSO demonstrated inhibitory effects on colitis-associated CRC in the AOM/DSS mice model, achieved through the suppression of proliferative and pro-inflammatory protein levels, and mitigation of gut dysbiosis, with discernible efficacy observed at a 5% dietary concentration.
Collapse
Affiliation(s)
- Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | | | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
3
|
Toussaint Nguélé A, Mozzicafreddo M, Carrara C, Piersanti A, Salum SS, Ali SM, Miceli C. Interplay Between Helminth Infections, Malnutrition, and Gut Microbiota in Children and Mothers from Pemba, Tanzania: Potential of Microbiota-Directed Interventions. Nutrients 2024; 16:4023. [PMID: 39683417 DOI: 10.3390/nu16234023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite efforts within the framework of the Sustainable Development Goal to end malnutrition by 2030, malnutrition and soil-transmitted helminth infections persist in sub-Saharan Africa. A significant barrier to success is the inadequate understanding of effective intervention methods. Most research on the gut microbiota's role in health has been conducted in developed countries, leaving a critical gap in knowledge regarding low-income populations. This study addresses this gap by expanding research on the gut microbiota of underprivileged populations to help tackle these public health challenges. METHODS We employed 16S rDNA sequencing to assess the bacterial gut microbiota composition of 60 children (mean age: 26.63 ± 6.36 months) and their 58 mothers (mean age: 30.03 ± 6.31 years) in Pemba, with a focus on helminth infection and nutritional status. RESULTS Our differential abundance analysis identified bacterial taxa that were significantly negatively associated with both helminth infections and malnutrition, highlighting the potential for microbiota-directed interventions to address these health issues simultaneously. Notably, we identified Akkermansia, Blautia, Dorea, and Odoribacter as promising probiotic candidates for such interventions. In stunted children, positive co-occurrences were observed between Lactobacillus, Prevotella, and Bacteroides, while Escherichia/Shigella displayed negative co-abundance relationships with short-chain fatty acid (SCFA) producers in the gut microbiota. These findings suggest that administering Lactobacillus and SCFA-producing probiotics to children may foster the growth of beneficial bacteria like Prevotella and Bacteroides while reducing the relative abundance of Escherichia/Shigella, potentially enhancing overall health. CONCLUSIONS This study underscores the importance of microbiota-directed interventions in children and women of reproductive age as promising strategies, alongside established approaches, for combating helminth infections and malnutrition in vulnerable populations.
Collapse
Affiliation(s)
- Aristide Toussaint Nguélé
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Institut Supérieur des Sciences de la Santé, Université Adventiste Cosendai, Nanga Eboko 04, Cameroon
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Carrara
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Salum Seif Salum
- School of Health and Medical Sciences, State University of Zanzibar, Zanzibar City 146, Tanzania
| | - Said M Ali
- Public Health Laboratory Ivo de Carneri, Chake Chake 122, Tanzania
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
4
|
Cattero V, Roussel C, Lessard-Lord J, Roy D, Desjardins Y. Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system. MICROBIOME RESEARCH REPORTS 2024; 3:34. [PMID: 39421251 PMCID: PMC11480733 DOI: 10.20517/mrr.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background: Proanthocyanidins (PAC) and oligosaccharides from cranberry exhibit multiple bioactive health properties and persist intact in the colon post-ingestion. They display a complex bidirectional interaction with the microbiome, which varies based on both time and specific regions of the gut; the nature of this interaction remains inadequately understood. Therefore, we aimed to investigate the impact of cranberry extract on gut microbiota ecology and function. Methods: We studied the effect of a cranberry extract on six healthy participants over a two-week supplementation period using the ex vivo artificial fermentation system TWIN-M-SHIME to replicate luminal and mucosal niches of the ascending and transverse colon. Results: Our findings revealed a significant influence of cranberry extract supplementation on the gut microbiota ecology under ex vivo conditions, leading to a considerable change in bacterial metabolism. Specifically, Bifidobacterium adolescentis (B. adolescentis) flourished in the mucus of the ascending colon, accompanied by a reduced adhesion of Proteobacteria. The overall bacterial metabolism shifted from acetate to propionate and, notably, butyrate production following PAC supplementation. Although there were variations in microbiota modulation among the six donors, the butyrogenic effect induced by the supplementation remained consistent across all individuals. This metabolic shift was associated with a rise in the relative abundance of several short-chain fatty acid (SCFA)-producing bacterial genera and the formation of a consortium of key butyrogenic bacteria in the mucus of the transverse colon. Conclusions: These observations suggest that cranberry extract supplementation has the potential to modulate the gut microbiota in a manner that may promote overall gut health.
Collapse
Affiliation(s)
- Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
- Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| |
Collapse
|
5
|
Elisia I, Yeung M, Kowalski S, Shyp T, Tee J, Hollman S, Wong A, King J, Dyer R, Sorensen PH, Krystal G. A ketogenic diet rich in fish oil is superior to other fats in preventing NNK-induced lung cancer in A/J mice. Sci Rep 2024; 14:5610. [PMID: 38453966 PMCID: PMC10920871 DOI: 10.1038/s41598-024-55167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest β-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Jason Tee
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Serena Hollman
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Amy Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Janette King
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Roger Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
6
|
Lessard-Lord J, Roussel C, Lupien-Meilleur J, Généreux P, Richard V, Guay V, Roy D, Desjardins Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024; 10:18. [PMID: 38448452 PMCID: PMC10918075 DOI: 10.1038/s41522-024-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Véronique Richard
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada.
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
| |
Collapse
|
7
|
Lessard-Lord J, Lupien-Meilleur J, Roussel C, Gosselin-Cliche B, Silvestri C, Di Marzo V, Roy D, Rousseau E, Desjardins Y. Mathematical modeling of fluid dynamics in in vitro gut fermentation systems: A new tool to improve the interpretation of microbial metabolism. FASEB J 2024; 38:e23398. [PMID: 38214938 DOI: 10.1096/fj.202301739rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
| | | | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche Universitaire de l'Institut de Cardiologie et Pneumologie de Québec (CRIUCPQ), Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche Universitaire de l'Institut de Cardiologie et Pneumologie de Québec (CRIUCPQ), Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Elsa Rousseau
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Computer Science and Software Engineering, Faculty of Science and Engineering, Université Laval, Quebec, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Université Laval, Quebec, Quebec, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
8
|
Roussel C, Sola M, Lessard-Lord J, Nallabelli N, Généreux P, Cavestri C, Azeggouar Wallen O, Villano R, Raymond F, Flamand N, Silvestri C, Di Marzo V. Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil. Gut Microbes 2024; 16:2335879. [PMID: 38695302 PMCID: PMC11067990 DOI: 10.1080/19490976.2024.2335879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Mathilde Sola
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
| | - Nayudu Nallabelli
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Camille Cavestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Oumaima Azeggouar Wallen
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (Napoli), Italy
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
9
|
Mougin C, Chataigner M, Lucas C, Leyrolle Q, Pallet V, Layé S, Bouvret E, Dinel AL, Joffre C. Dietary Marine Hydrolysate Improves Memory Performance and Social Behavior through Gut Microbiota Remodeling during Aging. Foods 2023; 12:4199. [PMID: 38231613 DOI: 10.3390/foods12234199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024] Open
Abstract
Aging is characterized by a decline in social behavior and cognitive functions leading to a decrease in life quality. In a previous study, we show that a fish hydrolysate supplementation prevents age-related decline in spatial short-term memory and long-term memory and anxiety-like behavior and improves the stress response in aged mice. The aim of this study was to determine the effects of a fish hydrolysate enriched with EPA/DHA or not on the cognitive ability and social interaction during aging and the biological mechanisms involved. We showed for the first time that a fish hydrolysate enriched with EPA/DHA or not improved memory performance and preference for social novelty that were diminished by aging. These changes were associated with the modulation of the gut microbiota, normalization of corticosterone, and modulation of the expression of genes involved in the mitochondrial respiratory chain, circadian clock, neuroprotection, and antioxidant activity. Thus, these changes may contribute to the observed improvements in social behavior and memory and reinforced the innovative character of fish hydrolysate in the prevention of age-related impairments.
Collapse
Affiliation(s)
- Camille Mougin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Mathilde Chataigner
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Quentin Leyrolle
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | | | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| |
Collapse
|
10
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
11
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
12
|
Silva Meneguelli T, Duarte Villas Mishima M, Hermsdorff HHM, Martino HSD, Bressan J, Tako E. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit Rev Food Sci Nutr 2023; 64:11206-11221. [PMID: 37450500 DOI: 10.1080/10408398.2023.2234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (β-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.
Collapse
Affiliation(s)
| | | | | | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
14
|
Shaikh SR, Bazinet RP. Heterogeneity in the response to n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2023; 26:284-287. [PMID: 36943155 PMCID: PMC10794042 DOI: 10.1097/mco.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW A central goal in the study of long chain n-3 polyunsaturated fatty acids (PUFA) is to translate findings from the basic sciences to the population level to improve human health and prevent chronic diseases. A tenet of this vision is to think in terms of precision medicine and nutrition, that is, stratification of individuals into differing groups that will have different needs across the lifespan for n-3 PUFAs. Therefore, there is a critical need to identify the sources of heterogeneity in the human population in the dietary response to n-3 PUFA intervention. RECENT FINDINGS We briefly review key sources of heterogeneity in the response to intake of long chain n-3 PUFAs. These include background diet, host genome, composition of the gut microbiome, and sex. We also discuss the need to integrate data from newer rodent models (e.g. population-based approaches), multi -omics, and analyses of big data using machine learning and data-driven cluster analyses. SUMMARY Accounting for vast heterogeneity in the human population, particularly with the use of big data integrated with preclinical evidence, will drive the next generation of precision nutrition studies and randomized clinical trials with long-chain n-3 PUFAs.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Silvestri C, Di Marzo V. The Gut Microbiome-Endocannabinoidome Axis: A New Way of Controlling Metabolism, Inflammation, and Behavior. FUNCTION 2023; 4:zqad003. [PMID: 36778747 PMCID: PMC9909364 DOI: 10.1093/function/zqad003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Affiliation(s)
- Cristoforo Silvestri
- Centre de Recherche de l’Institut de Pneumologie et Cardiologie de l’Université Laval, Département de médecine, Faculté de Médecine, Université Laval, Québec G1V 4G5, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Québec G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut de Pneumologie et Cardiologie de l’Université Laval, Département de médecine, Faculté de Médecine, Université Laval, Québec G1V 4G5, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Québec G1V 0A6, Canada
- Canada Research Excellence Chair on the Microbiome–Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec G1V 0A6, Canada
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
16
|
Zhao R, Wang YX, Yang CR, Li SQ, Li JC, Sun XQ, Wang HW, Wang Q, Zhang Y, Li JT. Dominant Elongase Activity of Elovl5a but Higher Expression of Elovl5b in Common Carp ( Cyprinus carpio). Int J Mol Sci 2022; 23:14666. [PMID: 36498993 PMCID: PMC9741273 DOI: 10.3390/ijms232314666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Most diploid freshwater and marine fish encode one elovl5 elongase, having substrate specificity and activities towards C18, C20 and C22 polyunsaturated fatty acids (PUFAs). The allo-tetraploid common carp is hypothesized to encode two duplicated elovl5 genes. How these two elovl5 genes adapt to coordinate the PUFA biosynthesis through elongase function and expression divergence requires elucidation. In this study, we obtained the full-length cDNA sequences of two elovl5 genes in common carp, named as elovl5a and elovl5b. Functional characterization showed that both enzymes had elongase activity towards C18, C20 and C22 PUFAs. Especially, the activities of these two enzymes towards C22 PUFAs ranged from 3.87% to 8.24%, higher than those in most freshwater and marine fish. The Elovl5a had higher elongase activities than Elovl5b towards seven substrates. The spatial-temporal expression showed that both genes co-transcribed in all tissues and development stages. However, the expression levels of elovl5b were significantly higher than those of elovl5a in all examined conditions, suggesting that elovl5b would be the dominantly expressed gene. These two genes had different potential transcriptional binding sites. These results revealed the complicated roles of elovl5 on PUFA synthesis in common carp. The data also increased the knowledge of co-ordination between two homoeologs of the polyploid fish through function and expression divergence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|