1
|
Dhimmar B, Modi U, Parihar SS, Makwana P, Boldrini CL, Vasita R. Fabrication of micropatterned PCL-collagen nanofibrous scaffold for cellular confinement induced early osteogenesis. BIOMATERIALS ADVANCES 2024; 164:213991. [PMID: 39146607 DOI: 10.1016/j.bioadv.2024.213991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The intricate interaction of the scaffold's architecture/geometry and with the cells is essential for tissue engineering and regenerative medicine. Cells sense their surrounding dynamic cues such as biophysical, biomechanical, and biochemical, and respond to them differently. Numerous studies have recently explored and reported the effect of contact guidance by culturing various types of cells on different types of micropatterned substrates such as microgrooves, geometric (square and triangle) micropattern, microstrips, micropatterned nanofibers. Amongst all of these micropatterned polymeric substrates; electrospun nanofibers have been regarded as a suitable substrate as it mimics the native ECM architectures. Therefore, in the present study; stencil-assisted electrospun Grid-lined micropatterned PCL-Collagen nanofibers (GLMPCnfs) were fabricated and its influence on the alignment and differentiation of pre-osteoblast cells (MC3T3-E1) was investigated. The randomly orientated Non-patterned PCL-Collagen nanofibers (NPPCnfs) were used as control. The patterns were characterized for their geometrical features such as area and thickness of deposition using surface profiler and scanning electron microscopy. A 61 % decrease in the overall area of GLMPCnfs as compared to the stencil area demonstrated the potential of electrofocusing phenomenon in the process of patterning electrospun nanofibers into various micron-scale structures. The MC3T3-E1 cells were confined and aligned in the direction of GLMPCnfs as confirmed by a high cellular aspect ratio (AR = 5.41), lower cellular shape index (CSI = 0.243), and cytoskeletal reorganization assessed through the F-actin filament immunocytochemistry (ICC) imaging. The aligned cells along the GLMPCnfs exhibited elevated alkaline phosphatase activity and enhanced mineralization. Furthermore, the gene expression profiling revealed upregulation of key osteogenic markers, such as ALP, OCN, OPN, COL1A1, and osteocyte markers DMP1, and SOST. Consequently, the research highlights the impact of GLMPCnfs on the cellular behaviour that results to the pre-osteoblast differentiation and the potential for stimulant-free early osteogenesis. These results offer an extensive understanding and mechanistic insight into how scaffold topography can be modified to influence cellular responses for effective bone regeneration strategies.
Collapse
Affiliation(s)
- Bindiya Dhimmar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Shayan Singh Parihar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIBSOLAR University of Milano-Biococca, and INSTM Milano-Biococca Research Unit Via Cozzi 55, I-20125 Milano, Italy
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Josephson TO, Morgan EF. Harnessing mechanical cues in the cellular microenvironment for bone regeneration. Front Physiol 2023; 14:1232698. [PMID: 37877097 PMCID: PMC10591087 DOI: 10.3389/fphys.2023.1232698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
At the macroscale, bones experience a variety of compressive and tensile loads, and these loads cause deformations of the cortical and trabecular microstructure. These deformations produce a variety of stimuli in the cellular microenvironment that can influence the differentiation of marrow stromal cells (MSCs) and the activity of cells of the MSC lineage, including osteoblasts, osteocytes, and chondrocytes. Mechanotransduction, or conversion of mechanical stimuli to biochemical and biological signals, is thus part of a multiscale mechanobiological process that drives bone modeling, remodeling, fracture healing, and implant osseointegration. Despite strong evidence of the influence of a variety of mechanical cues, and multiple paradigms proposed to explain the influence of these cues on tissue growth and differentiation, even a working understanding of how skeletal cells respond to the complex combinations of stimuli in their microenvironments remains elusive. This review covers the current understanding of what types of microenvironmental mechanical cues MSCs respond to and what is known about how they respond in the presence of multiple such cues. We argue that in order to realize the vast potential for harnessing the cellular microenvironment for the enhancement of bone regeneration, additional investigations of how combinations of mechanical cues influence bone regeneration are needed.
Collapse
Affiliation(s)
- Timothy O. Josephson
- Biomedical Engineering, Boston University, Boston, MA, United States
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Elise F. Morgan
- Biomedical Engineering, Boston University, Boston, MA, United States
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
- Mechanical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
3
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
4
|
Jiao F, Xu J, Zhao Y, Ye C, Sun Q, Liu C, Huo B. Synergistic effects of fluid shear stress and adhesion morphology on the apoptosis and osteogenesis of mesenchymal stem cells. J Biomed Mater Res A 2022; 110:1636-1644. [DOI: 10.1002/jbm.a.37413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Fei Jiao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Jiayi Xu
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Yang Zhao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chongyang Ye
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chenglin Liu
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| |
Collapse
|
5
|
Knothe Tate ML, Srikantha A, Wojek C, Zeidler D. Connectomics of Bone to Brain-Probing Physical Renderings of Cellular Experience. Front Physiol 2021; 12:647603. [PMID: 34322033 PMCID: PMC8313296 DOI: 10.3389/fphys.2021.647603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
“Brainless” cells, the living constituents inhabiting all biological materials, exhibit remarkably smart, i.e., stimuli-responsive and adaptive, behavior. The emergent spatial and temporal patterns of adaptation, observed as changes in cellular connectivity and tissue remodeling by cells, underpin neuroplasticity, muscle memory, immunological imprinting, and sentience itself, in diverse physiological systems from brain to bone. Connectomics addresses the direct connectivity of cells and cells’ adaptation to dynamic environments through manufacture of extracellular matrix, forming tissues and architectures comprising interacting organs and systems of organisms. There is imperative to understand the physical renderings of cellular experience throughout life, from the time of emergence, to growth, adaptation and aging-associated degeneration of tissues. Here we address this need through development of technological approaches that incorporate cross length scale (nm to m) structural data, acquired via multibeam scanning electron microscopy, with machine learning and information transfer using network modeling approaches. This pilot case study uses cutting edge imaging methods for nano- to meso-scale study of cellular inhabitants within human hip tissue resected during the normal course of hip replacement surgery. We discuss the technical approach and workflow and identify the resulting opportunities as well as pitfalls to avoid, delineating a path for cellular connectomics studies in diverse tissue/organ environments and their interactions within organisms and across species. Finally, we discuss the implications of the outlined approach for neuromechanics and the control of physical behavior and neuromuscular training.
Collapse
Affiliation(s)
| | | | - Christian Wojek
- Corporate Research and Technology, Carl Zeiss AG, Oberkochen, Germany
| | | |
Collapse
|
6
|
Knothe Tate ML. Advanced Design and Manufacture of Mechanoactive Materials Inspired by Skin, Bones, and Skin-on-Bones. Front Bioeng Biotechnol 2020; 8:845. [PMID: 32984263 PMCID: PMC7477045 DOI: 10.3389/fbioe.2020.00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Life is mechanobiological. Natural living materials exhibit remarkable, emergent and smart properties under mechanical loading. Such materials are classified as mechanoactive, in contrast to electroactive polymers and materials that exhibit advanced properties when subjected to electrical stimulation. Cutting edge, multiscale imaging technologies have proven enabling for the elucidation of molecular to meso-scale structure and function of natural mechanoactive materials. Using Microscopy-Aided Design And ManufacturE, (MADAME) this perspective article describes mechanoactive properties of natural materials including skin-on-bones (periosteum) and bone itself. In so doing, it demonstrates the principle to emulate natural smart properties using recursive logic, the basis of many computer algorithms, and to design and manufacture mechanoactive materials and products using advanced manufacturing methods that also incorporate principles of recursive logic. In sum, the MADAME approach translates physically the computer science paradigm of recursion by implementing Jacquard textile methods, which themselves form a historical basis for computing machines, together with additive manufacturing methods including multidimensional printing, stereolithography, laser sintering, etc. These integrated methods provide a foundation and translational pathway for scaled-up manufacture of disruptive mechanoactive materials that will find use in fields as varied as medicine, safety, transport and sports, for internal (implants) and external (wearables) applications.
Collapse
Affiliation(s)
- Melissa Louise Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Director MechBio Team, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Putra VDL, Song MJ, McBride-Gagyi S, Chang H, Poole K, Whan R, Dean D, Sansalone V, Knothe Tate ML. Mechanomics Approaches to Understand Cell Behavior in Context of Tissue Neogenesis, During Prenatal Development and Postnatal Healing. Front Cell Dev Biol 2020; 7:354. [PMID: 32010686 PMCID: PMC6979483 DOI: 10.3389/fcell.2019.00354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 01/22/2023] Open
Abstract
Mechanomics represents the natural progression of knowledge at the intersection of mechanics and biology with the aim to codify the role of mechanical environment on biological adaptation. Compared to the mapping of the human genome, the challenge of mapping the mechanome remains unsolved. Solving this grand challenge will require both top down and bottom up R&D approaches using experimental and computational tools to visualize and measure adaptation as it occurs. Akin to a mechanical test of a smart material that changes its mechanical properties and local environment under load, stem cells adapt their shape, cytoskeletal architecture, intrinsic mechanical properties, as well as their own niche, through cytoskeletal adaptation as well as up- and down-regulation of structural proteins that modulate their mechanical milieux. Recent advances in live cell imaging allow for unprecedented study and measurements of displacements, shape and volume changes in stem cells, reconfiguring of cytoskeletal machinery (nucleus, cytoskeleton), in response to controlled mechanical forces and stresses applied at cellular boundaries. Coupled with multiphysics computational and virtual power theoretical approaches, these novel experimental approaches enable mechanical testing of stem cells, multicellular templates, and tissues inhabited by stem cells, while the stem cells themselves evolve over time. The novel approach is paving the way to decipher mechanisms of structural and functional adaptation of stem cells in response to controlled mechanical cues. This mini-review outlines integrated approaches and methodologies implemented to date in a series of studies carried out by our consortium. The consortium's body of work is described in context of current roadblocks in the field and innovative, breakthrough solutions and is designed to encourage discourse and cross disciplinary collaboration in the scientific community.
Collapse
Affiliation(s)
- Vina D. L. Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Min Jae Song
- MechBio Team, Departments of Biomedical and Mechanical & Aerospace Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- 3D Bioprinting Core, Ocular and Stem Cell Translational Research Unit, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Sarah McBride-Gagyi
- MechBio Team, Departments of Biomedical and Mechanical & Aerospace Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Hana Chang
- MechBio Team, Departments of Biomedical and Mechanical & Aerospace Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Kate Poole
- Cellular Mechanotransduction Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Renee Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - David Dean
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, United States
| | - Vittorio Sansalone
- Université Paris-Est Créteil, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil Cedex, France
| | - Melissa L. Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- MechBio Team, Departments of Biomedical and Mechanical & Aerospace Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Lindberg G, Ståhle P. Growth of a long bone cross section – A 2D phase-field model. Math Biosci 2019; 313:1-11. [DOI: 10.1016/j.mbs.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/17/2018] [Accepted: 04/19/2019] [Indexed: 11/15/2022]
|
10
|
Paul GR, Malhotra A, Müller R. Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-Scale Loads to Cellular Signals. Curr Osteoporos Rep 2018; 16:395-403. [PMID: 29915967 PMCID: PMC6579731 DOI: 10.1007/s11914-018-0448-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Connecting organ-scale loads to cellular signals in their local in vivo environment is a current challenge in the field of bone (re)modelling. Understanding this critical missing link would greatly improve our ability to anticipate mechanotransduction during different modes of stimuli and the resultant cellular responses. This review characterises computational approaches that could enable coupling links across the multiple scales of bone. RECENT FINDINGS Current approaches using strain and fluid shear stress concepts have begun to link organ-scale loads to cellular signals; however, these approaches fail to capture localised micro-structural heterogeneities. Furthermore, models that incorporate downstream communication from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the understanding of (re)modelling activities. Incorporating this potentially key information in the local in vivo environment will aid in developing multiscale models of mechanotransduction that can predict or help describe resultant biological events related to bone (re)modelling. Progress towards multiscale determination of the cell mechanical environment from organ-scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational models that include localised environmental variation, strain amplification and intercellular communication mechanisms will ultimately help couple the hierarchal levels of bone.
Collapse
Affiliation(s)
- Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland
| | - Angad Malhotra
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
11
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
12
|
Scheuren A, Wehrle E, Flohr F, Müller R. Bone mechanobiology in mice: toward single-cell in vivo mechanomics. Biomech Model Mechanobiol 2017; 16:2017-2034. [PMID: 28735414 DOI: 10.1007/s10237-017-0935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023]
Abstract
Mechanically driven bone (re)modeling is a multiscale process mediated through complex interactions between multiple cell types and their microenvironments. However, the underlying mechanisms of how cells respond to mechanical signals are still unclear and are at the focus of the field of bone mechanobiology. Traditionally, this complex process has been addressed by reducing the system to single scales and cell types. It is only recently that more integrative approaches have been established to study bone mechanobiology across multiple scales in which mechanical load at the organ level is related to molecular responses at the cellular level. The availability of mouse loading models and imaging techniques with improved spatial and temporal resolution has made it possible to track dynamic bone (re)modeling at the tissue and cellular level in vivo. Coupled with advanced computational models, the (re)modeling activities at the tissue scale can be associated with the mechanical microenvironment. However, methods are lacking to link the molecular responses of different cell types to their local mechanical microenvironment and bone (re)modeling activities occurring at the tissue scale. With recent improvements in "omics" technologies and single-cell molecular biology, it is now possible to sequence the complete genome and transcriptome of single cells. These technologies offer unique opportunities to comprehensively investigate the cellular transcriptional profiles within their specific microenvironment. By combining single-cell "omics" technologies with well-established tissue-scale models of bone mechanobiology, we propose a mechanomics approach to locally analyze the transcriptome of single cells with respect to their local 3D mechanical in vivo environment.
Collapse
Affiliation(s)
- Ariane Scheuren
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Felicitas Flohr
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Ng JL, Kersh ME, Kilbreath S, Knothe Tate M. Establishing the Basis for Mechanobiology-Based Physical Therapy Protocols to Potentiate Cellular Healing and Tissue Regeneration. Front Physiol 2017; 8:303. [PMID: 28634452 PMCID: PMC5460618 DOI: 10.3389/fphys.2017.00303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Life is mechanobiological: mechanical stimuli play a pivotal role in the formation of structurally and functionally appropriate body templates through mechanobiologically-driven cellular and tissue re/modeling. The body responds to mechanical stimuli engendered through physical movement in an integrated fashion, internalizing and transferring forces from organ, through tissue and cellular length scales. In the context of rehabilitation and therapeutic outcomes, such mechanical stimuli are referred to as mechanotherapy. Physical therapists use mechanotherapy and mechanical interventions, e.g., exercise therapy and manual mobilizations, to restore function and treat disease and/or injury. While the effect of directed movement, such as in physical therapy, is well documented at the length scale of the body and its organs, a number of recent studies implicate its integral effect in modulating cellular behavior and subsequent tissue adaptation. Yet the link between movement biomechanics, physical therapy, and subsequent cellular and tissue mechanoadaptation is not well established in the literature. Here we review mechanoadaptation in the context of physical therapy, from organ to cell scale mechanotransduction and cell to organ scale extracellular matrix genesis and re/modeling. We suggest that physical therapy can be developed to harness the mechanosensitivity of cells and tissues, enabling prescriptive definition of physical and mechanical interventions to enhance tissue genesis, healing, and rehabilitation.
Collapse
Affiliation(s)
- Joanna L. Ng
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-ChampaignChampaign, IL, United States
| | - Sharon Kilbreath
- Faculty of Health Sciences, University of SydneySydney, NSW, Australia
| | - M. Knothe Tate
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
14
|
Ng JL, Knothe LE, Whan RM, Knothe U, Tate MLK. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials. Sci Rep 2017; 7:40396. [PMID: 28074876 PMCID: PMC5225443 DOI: 10.1038/srep40396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/07/2016] [Indexed: 01/13/2023] Open
Abstract
We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.
Collapse
Affiliation(s)
- Joanna L. Ng
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Australia, Sydney, Australia
| | - Lillian E. Knothe
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Australia, Sydney, Australia
- School of Art & Design, University of New South Wales (UNSW) Australia, Sydney, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, Australia
| | - Ulf Knothe
- Cleveland Clinic, Cleveland, USA
- TissuTex Pty Ltd, Wentworth Falls, Australia
| | - Melissa L. Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Australia, Sydney, Australia
| |
Collapse
|
15
|
Knothe Tate ML, Yu NYC, Jalilian I, Pereira AF, Knothe UR. Periosteum mechanobiology and mechanistic insights for regenerative medicine. BONEKEY REPORTS 2016; 5:857. [PMID: 27974968 PMCID: PMC5129676 DOI: 10.1038/bonekey.2016.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Abstract
Periosteum is a smart mechanobiological material that serves as a habitat and delivery vehicle for stem cells as well as biological factors that modulate tissue genesis and healing. Periosteum's remarkable regenerative capacity has been harnessed clinically for over two hundred years. Scientific studies over the past decade have begun to decipher the mechanobiology of periosteum, which has a significant role in its regenerative capacity. This integrative review outlines recent mechanobiological insights that are key to modulating and translating periosteum and its resident stem cells in a regenerative medicine context.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Iman Jalilian
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - André F Pereira
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ulf R Knothe
- TissuTex Pty. Ltd., Wentworth Falls, NSW, Australia
| |
Collapse
|