1
|
Zi-Yi Z, Qin Q, Fei Z, Cun-Yu C, Lin T. Nesprin proteins: bridging nuclear envelope dynamics to muscular dysfunction. Cell Commun Signal 2024; 22:208. [PMID: 38566066 PMCID: PMC10986154 DOI: 10.1186/s12964-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.
Collapse
Affiliation(s)
- Zhou Zi-Yi
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zhou Fei
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Cao Cun-Yu
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Teng Lin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China.
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, SE5 9NU, UK.
| |
Collapse
|
2
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
3
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Labasse C, Brochier G, Taratuto AL, Cadot B, Rendu J, Monges S, Biancalana V, Quijano-Roy S, Bui MT, Chanut A, Madelaine A, Lacène E, Beuvin M, Amthor H, Servais L, de Feraudy Y, Erro M, Saccoliti M, Neto OA, Fauré J, Lannes B, Laugel V, Coppens S, Lubieniecki F, Bello AB, Laing N, Evangelista T, Laporte J, Böhm J, Romero NB. Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies. Acta Neuropathol Commun 2022; 10:101. [PMID: 35810298 PMCID: PMC9271256 DOI: 10.1186/s40478-022-01400-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.
Collapse
Affiliation(s)
- Clémence Labasse
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Ana-Lia Taratuto
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Bruno Cadot
- Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - John Rendu
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Soledad Monges
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Valérie Biancalana
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Susana Quijano-Roy
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Mai Thao Bui
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Anaïs Chanut
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Angéline Madelaine
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacène
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Maud Beuvin
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Helge Amthor
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Laurent Servais
- Centre de Références Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of Liège, Liège, Belgium.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yvan de Feraudy
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Marcela Erro
- Gutierrez Pediatric Hospital, Buenos Aires, Argentina
| | - Maria Saccoliti
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Osorio Abath Neto
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Julien Fauré
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Lannes
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Sandra Coppens
- Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabiana Lubieniecki
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Ana Buj Bello
- Université Paris-Saclay, Integrare Research Unit UMR S951, Inserm, Evry, France.,Généthon, Université Evry, Evry, France
| | - Nigel Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Teresinha Evangelista
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France. .,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
6
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr 2021; 9:e0055821. [PMID: 34287056 PMCID: PMC8552679 DOI: 10.1128/spectrum.00558-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial. IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.
Collapse
Affiliation(s)
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
8
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Nuclear Morphological Remodeling in Human Granulocytes Is Linked to Prenylation Independently from Cytoskeleton. Cells 2020; 9:cells9112509. [PMID: 33233551 PMCID: PMC7699803 DOI: 10.3390/cells9112509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.
Collapse
|
10
|
Lin S, Taylor MD, Singh PK, Yang S. How does fascin promote cancer metastasis? FEBS J 2020; 288:1434-1446. [PMID: 32657526 DOI: 10.1111/febs.15484] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Fascin is an F-actin-bundling protein that cross-links individual actin filaments into straight and stiff bundles. Fascin overexpression in cancer is strongly associated with poor prognosis and metastatic progression across different cancer types. It is well established that fascin plays a causative role in promoting metastatic progression. We will review the recent progress in our understanding of mechanisms underlying fascin-mediated cancer metastasis. This review will cover the biochemical basis for fascin-bundling activity, the mechanisms by which cancer cells upregulate fascin expression and the mechanism underlying fascin-mediated cancer cell migration, invasion, and metastatic colonization. We propose that fascin has broad roles in both metastatic dissemination and metastatic colonization. Understanding these mechanisms will be crucial to the development of anti-metastasis therapeutics targeting fascin.
Collapse
Affiliation(s)
- Shengchen Lin
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Matthew D Taylor
- Department of Surgery, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pankaj K Singh
- Department of Pathology and Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Davidson PM, Battistella A, Déjardin T, Betz T, Plastino J, Borghi N, Cadot B, Sykes C. Nesprin-2 accumulates at the front of the nucleus during confined cell migration. EMBO Rep 2020; 21:e49910. [PMID: 32419336 DOI: 10.15252/embr.201949910] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which cells exert forces on their nuclei to migrate through openings smaller than the nuclear diameter remain unclear. We use CRISPR/Cas9 to fluorescently label nesprin-2 giant, which links the cytoskeleton to the nuclear interior. We demonstrate that nesprin-2 accumulates at the front of the nucleus during nuclear deformation through narrow constrictions, independently of the nuclear lamina. We find that nesprins are mobile at time scales similar to the accumulation. Using artificial constructs, we show that the actin-binding domain of nesprin-2 is necessary and sufficient for this accumulation. Actin filaments are organized in a barrel structure around the nucleus in the direction of movement. Using two-photon ablation and cytoskeleton-inhibiting drugs, we demonstrate an actomyosin-dependent pulling force on the nucleus from the front of the cell. The elastic recoil upon ablation is dampened when nesprins are reduced at the nuclear envelope. We thus show that actin redistributes nesprin-2 giant toward the front of the nucleus and contributes to pulling the nucleus through narrow constrictions, in concert with myosin.
Collapse
Affiliation(s)
- Patricia M Davidson
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France.,Center for Research in Myology, INSERM UMR974, Sorbonne Université, Paris, France
| | - Aude Battistella
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France
| | - Théophile Déjardin
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France.,Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, France
| | - Timo Betz
- Institute of Cell Biology, ZMBE, Münster, Germany
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, France
| | - Bruno Cadot
- Center for Research in Myology, INSERM UMR974, Sorbonne Université, Paris, France
| | - Cécile Sykes
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France
| |
Collapse
|
12
|
Lai WF, Wong WT. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 2020; 58:101021. [PMID: 31968269 DOI: 10.1016/j.arr.2020.101021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the cytoskeleton is essential to diverse cellular processes such as phagocytosis and intracellular trafficking. Disruption of the organization and dynamics of the actin cytoskeleton leads to age-associated symptoms and diseases, ranging from cancer to neurodegeneration. In addition, changes in the integrity of the actin cytoskeleton disrupt the functioning of not only somatic and stem cells but also gametes, resulting in aberrant embryonic development. Strategies to preserve the integrity and dynamics of the cytoskeleton are, therefore, potentially therapeutic to age-related disorders. The objective of this article is to revisit the current understanding of the roles played by the actin cytoskeleton in aging, and to review the opportunities and challenges for the transition of basic research into intervention development. It is hoped that, with the snapshot of evidence regarding changes in actin dynamics with advanced age, insights into future research directions can be attained.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Shenzhen University, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
13
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
14
|
Ferreira MA, Despin-Guitard E, Duarte F, Degond P, Theveneau E. Interkinetic nuclear movements promote apical expansion in pseudostratified epithelia at the expense of apicobasal elongation. PLoS Comput Biol 2019; 15:e1007171. [PMID: 31869321 PMCID: PMC6957215 DOI: 10.1371/journal.pcbi.1007171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/13/2020] [Accepted: 11/17/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudostratified epithelia (PSE) are a common type of columnar epithelia found in a wealth of embryonic and adult tissues such as ectodermal placodes, the trachea, the ureter, the gut and the neuroepithelium. PSE are characterized by the choreographed displacement of cells’ nuclei along the apicobasal axis according to phases of their cell cycle. Such movements, called interkinetic movements (INM), have been proposed to influence tissue expansion and shape and suggested as culprit in several congenital diseases such as CAKUT (Congenital anomalies of kidney and urinary tract) and esophageal atresia. INM rely on cytoskeleton dynamics just as adhesion, contractility and mitosis do. Therefore, long term impairment of INM without affecting proliferation and adhesion is currently technically unachievable. Here we bypassed this hurdle by generating a 2D agent-based model of a proliferating PSE and compared its output to the growth of the chick neuroepithelium to assess the interplay between INM and these other important cell processes during growth of a PSE. We found that INM directly generates apical expansion and apical nuclear crowding. In addition, our data strongly suggest that apicobasal elongation of cells is not an emerging property of a proliferative PSE but rather requires a specific elongation program. We then discuss how such program might functionally link INM, tissue growth and differentiation. Pseudostratified epithelia (PSE) are a common type of epithelia characterized by the choreographed displacement of cells’ nuclei along the apicobasal axis during proliferation. These so-called interkinetic movements (INM) were proposed to influence tissue expansion and suggested as culprit in several congenital diseases. INM rely on cytoskeleton dynamics. Therefore, longer term impairment of INM without affecting proliferation and adhesion is currently technically unachievable. We bypassed this hurdle by generating a mathematical model of PSE and compared it to the growth of an epithelium of reference. Our data show that INM drive expansion of the apical domain of the epithelium and suggest that apicobasal elongation of cells is not an emerging property of a proliferative PSE but might rather requires a specific elongation program.
Collapse
Affiliation(s)
- Marina A. Ferreira
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Evangeline Despin-Guitard
- Centre for Developmental Biology, Centre for Integrative Biology, CNRS, Université Paul Sabatier, France
| | - Fernando Duarte
- Centre for Developmental Biology, Centre for Integrative Biology, CNRS, Université Paul Sabatier, France
| | - Pierre Degond
- Department of Mathematics, Imperial College London, London, United Kingdom
- * E-mail: (PD); (ET)
| | - Eric Theveneau
- Centre for Developmental Biology, Centre for Integrative Biology, CNRS, Université Paul Sabatier, France
- * E-mail: (PD); (ET)
| |
Collapse
|
15
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem Biophys Res Commun 2018; 506:378-386. [DOI: 10.1016/j.bbrc.2017.11.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
|
17
|
Li G, Song X, Li R, Sun L, Gong X, Chen C, Yang L. Zyxin-involved actin regulation is essential in the maintenance of vinculin focal adhesion and chondrocyte differentiation status. Cell Prolif 2018; 52:e12532. [PMID: 30328655 PMCID: PMC6430480 DOI: 10.1111/cpr.12532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives To investigate the role of zyxin‐involved actin regulation in expression level of vinculin focal adhesion and collagen production of chondrocyte and its possible underlying mechanism. Materials and methods Chondrocytes obtained from rabbit articular cartilage were used in this study. The expression of zyxin, actin and vinculin, as well as the extracellular matrix (ECM) protein collagen type I, II and X (COL I, II and X) of chondrocytes were compared between zyxin‐knockdown group and negative control group, and between transforming growth factor‐β1 (TGF‐β1) treatment group and non‐treatment group, respectively. Results Knockdown of zyxin increased the ratio of globular actin (G‐actin) to filamentous actin (F‐actin) of chondrocyte, which further inhibited expression of vinculin and chondrogenic marker COL II as well as hypertrophy marker COL X. On the other hand, chondrocytes treated with TGF‐β1 showed an enhanced expression of F‐actin, and a lower expression of zyxin compared to non‐treatment group. In response to TGF‐β1‐induced actin polymerization, expression of vinculin and COL I was increased, while expression of COL II and aggrecan was decreased. Conclusions These results demonstrate supporting evidence that in chondrocytes the level of zyxin is closely associated with the state of actin polymerization. In particular, the change of zyxin and F‐actin parallels with the change of COL II and vinculin, respectively, indicating a major role of zyxin‐actin interaction in the synthesis of collagen ECM and the remodelling of cytoskeleton‐ECM adhesion.
Collapse
Affiliation(s)
- Gaoming Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China.,Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Tan HT, Chung MCM. Label-Free Quantitative Phosphoproteomics Reveals Regulation of Vasodilator-Stimulated Phosphoprotein upon Stathmin-1 Silencing in a Pair of Isogenic Colorectal Cancer Cell Lines. Proteomics 2018; 18:e1700242. [PMID: 29460479 DOI: 10.1002/pmic.201700242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/10/2018] [Indexed: 02/06/2023]
Abstract
In this communication, we present the phosphoproteome changes in an isogenic pair of colorectal cancer cell lines, viz., the poorly metastatic HCT-116 and the highly metastatic derivative E1, upon stathmin-1 (STMN1) knockdown. The aim was to better understand how the alterations of the phosphoproteins in these cells are involved in cancer metastasis. After the phosphopeptides were enriched using the TiO2 HAMMOC approach, comparative proteomics analysis was carried out using sequential window acquisition of all theoretical mass spectra-MS. Following bioinformatics analysis using MarkerView and OneOmics platforms, we identified a list of regulated phosphoproteins that may play a potential role in signaling, maintenance of cytoskeletal structure, and focal adhesion. Among these phosphoproteins, was the actin cytoskeleton regulator protein, vasodilator-stimulated phosphoprotein (VASP), where its change in phosphorylation status was found to be concomitant with STMN1-associated roles in metastasis. We further showed that silencing of stathmin-1 altered the expression, subcellular localization and phosphorylation status of VASP, which suggested that it might be associated with remodeling of the cell cytoskeleton in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maxey Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Breaking the scale: how disrupting the karyoplasmic ratio gives cancer cells an advantage for metastatic invasion. Biochem Soc Trans 2017; 45:1333-1344. [PMID: 29150524 DOI: 10.1042/bst20170153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.
Collapse
|