1
|
Vivo M, Rosti V, Cervone S, Lanzuolo C. Chromatin plasticity in mechanotransduction. Curr Opin Cell Biol 2024; 88:102376. [PMID: 38810318 DOI: 10.1016/j.ceb.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Living organisms can detect and respond to physical forces at the cellular level. The pathways that transmit these forces to the nucleus allow cells to react quickly and consistently to environmental changes. Mechanobiology involves the interaction between physical forces and biological processes and is crucial for driving embryonic development and adapting to environmental cues during adulthood. Molecular studies have shown that cells can sense mechanical signals directly through membrane receptors linked to the cytoskeleton or indirectly through biochemical cascades that can influence gene expression for environmental adaptation. This review will explore the role of epigenetic modifications, emphasizing the 3D genome architecture and nuclear structures as responders to mechanical stimuli, which ensure cellular memory and adaptability. Understanding how mechanical cues are transduced and regulate cell functioning, governing processes such as cell programming and reprogramming, is essential for advancing our knowledge of human diseases.
Collapse
Affiliation(s)
- Maria Vivo
- Università degli Studi di Salerno, Fisciano, Italy.
| | - Valentina Rosti
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy; INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sara Cervone
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy; INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
| |
Collapse
|
2
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
3
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Abstract
Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
Collapse
Affiliation(s)
- Xianrong Wong
- Laboratory of Developmental and Regenerative Biology, Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138648
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
5
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
6
|
Kovalchuk T, Yakovleva E, Fetisova S, Vershinina T, Lebedeva V, Lyubimtseva T, Lebedev D, Mitrofanova L, Ryzhkov A, Sokolnikova P, Fomicheva Y, Kozyreva A, Zhuk S, Smolina N, Zlotina A, Pervunina T, Kostareva A, Vasichkina E. Case Reports: Emery-Dreifuss Muscular Dystrophy Presenting as a Heart Rhythm Disorders in Children. Front Cardiovasc Med 2021; 8:668231. [PMID: 34026875 PMCID: PMC8137911 DOI: 10.3389/fcvm.2021.668231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is inherited muscle dystrophy often accompanied by cardiac abnormalities in the form of supraventricular arrhythmias, conduction defects and sinus node dysfunction. Cardiac phenotype typically arises years after skeletal muscle presentation, though, could be severe and life-threatening. The defined clinical manifestation with joint contractures, progressive muscle weakness and atrophy, as well as cardiac symptoms are observed by the third decade of life. Still, clinical course and sequence of muscle and cardiac signs may be variable and depends on the genotype. Cardiac abnormalities in patients with EDMD in pediatric age are not commonly seen. Here we describe five patients with different forms of EDMD (X-linked and autosomal-dominant) caused by the mutations in EMD and LMNA genes, presented with early onset of cardiac abnormalities and no prominent skeletal muscle phenotype. The predominant forms of cardiac pathology were atrial arrhythmias and conduction disturbances that progress over time. The presented cases discussed in the light of therapeutic strategy, including radiofrequency ablation and antiarrhythmic devices implantation, and the importance of thorough neurological and genetic screening in pediatric patients presenting with complex heart rhythm disorders.
Collapse
Affiliation(s)
- Tatiana Kovalchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Elena Yakovleva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Svetlana Fetisova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tatiana Vershinina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Viktoriya Lebedeva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tamara Lyubimtseva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitriy Lebedev
- Institute of Heart and Vessels, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Lubov Mitrofanova
- Pathology Unit, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anton Ryzhkov
- Radiology Unit, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Polina Sokolnikova
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yuliya Fomicheva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexandra Kozyreva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Sergey Zhuk
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia Smolina
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Zlotina
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tatiana Pervunina
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Vasichkina
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
7
|
Role of Cdkn2a in the Emery-Dreifuss Muscular Dystrophy Cardiac Phenotype. Biomolecules 2021; 11:biom11040538. [PMID: 33917623 PMCID: PMC8103514 DOI: 10.3390/biom11040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
The Cdkn2a locus is one of the most studied tumor suppressor loci in the context of several cancer types. However, in the last years, its expression has also been linked to terminal differentiation and the activation of the senescence program in different cellular subtypes. Knock-out (KO) of the entire locus enhances the capability of stem cells to proliferate in some tissues and respond to severe physiological and non-physiological damages in different organs, including the heart. Emery-Dreifuss muscular dystrophy (EDMD) is characterized by severe contractures and muscle loss at the level of skeletal muscles of the elbows, ankles and neck, and by dilated cardiomyopathy. We have recently demonstrated, using the LMNA Δ8-11 murine model of Emery-Dreifuss muscular dystrophy (EDMD), that dystrophic muscle stem cells prematurely express non-lineage-specific genes early on during postnatal growth, leading to rapid exhaustion of the muscle stem cell pool. Knock-out of the Cdkn2a locus in EDMD dystrophic mice partially restores muscle stem cell properties. In the present study, we describe the cardiac phenotype of the LMNA Δ8-11 mouse model and functionally characterize the effects of KO of the Cdkn2a locus on heart functions and life expectancy.
Collapse
|
8
|
Hoskins VE, Smith K, Reddy KL. The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Curr Opin Genet Dev 2021; 67:163-173. [PMID: 33774266 PMCID: PMC8489734 DOI: 10.1016/j.gde.2021.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The nucleus is a highly structured organelle with many chromatin and protein compartments that partition the genome into regulatory domains. One such a compartment within the mammalian nucleus is the microenvironment underlying the nuclear envelope (NE) where intermediate filament proteins, lamins, act as a link between cytoskeletal and inner nuclear membrane (INM) proteins, chromatin binders and modifiers, and heterochromatin. These dynamic interactions regulate many cellular processes and, when they are perturbed, can lead to genome dysregulation and disease.
Collapse
Affiliation(s)
- Victoria E Hoskins
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States
| | - Kristiana Smith
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States
| | - Karen L Reddy
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States; Sidney Kimmel Cancer Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States; Johns Hopkins University, School of Medicine, Department of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
10
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
11
|
Xiong H. Novel candidate alleles associated with gene regulation for Emery-Dreifuss muscular dystrophy. EBioMedicine 2020; 52:102620. [PMID: 31981977 PMCID: PMC6992946 DOI: 10.1016/j.ebiom.2019.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hui Xiong
- Department of Pediatrics, Peking University First Hospital, 1, Xi anmen St., West District, Beijing, China.
| |
Collapse
|
12
|
Zhang B, Yang Y, Keyimu R, Hao J, Zhao Z, Ye R. The role of lamin A/C in mesenchymal stem cell differentiation. J Physiol Biochem 2019; 75:11-18. [PMID: 30706289 DOI: 10.1007/s13105-019-00661-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/21/2019] [Indexed: 02/05/2023]
Abstract
Lamin A/C is the major architectural protein of cell nucleus in charge of the nuclear mechanosensing. By integrating extracellular mechanical and biochemical signals, lamin A/C regulates multiple intracellular events including mesenchymal stem cell (MSC) fate determination. Herein, we review the recent findings about the effects and mechanisms of lamin A/C in governing MSC lineage commitment, with a special focus on osteogenesis and adipogenesis. Better understanding of MSC differentiation regulated by lamin A/C could provide insights into pathogenesis of age-related osteoporosis.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Reziwan Keyimu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- Program in Biological Sciences in Dental Medicine, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Rui Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|