1
|
Green NM, Talbot D, Tootle TL. Nuclear actin is a critical regulator of Drosophila female germline stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609996. [PMID: 39253513 PMCID: PMC11383290 DOI: 10.1101/2024.08.27.609996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness using Drosophila ovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Nicole M. Green
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, Cornell College, 600 First Street SW, Mount Vernon, IA 52314
| | - Danielle Talbot
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| |
Collapse
|
2
|
Krutko M, Poling HM, Bryan AE, Sharma M, Singh A, Reza HA, Wikenheiser-Brokamp KA, Takebe T, Helmrath MA, Harris GM, Esfandiari L. Enhanced Piezoelectric Performance of PVDF-TrFE Nanofibers through Annealing for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608345. [PMID: 39229142 PMCID: PMC11370437 DOI: 10.1101/2024.08.16.608345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.
Collapse
|
3
|
Baxi AB, Nemes P, Moody SA. Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates. iScience 2023; 26:107665. [PMID: 37670778 PMCID: PMC10475516 DOI: 10.1016/j.isci.2023.107665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
Over 200 genes are known to underlie human congenital hearing loss (CHL). Although transcriptomic approaches have identified candidate regulators of otic development, little is known about the abundance of their protein products. We used a multiplexed quantitative mass spectrometry-based proteomic approach to determine protein abundances over key stages of Xenopus otic morphogenesis to reveal a dynamic expression of cytoskeletal, integrin signaling, and extracellular matrix proteins. We correlated these dynamically expressed proteins to previously published lists of putative downstream targets of human syndromic hearing loss genes: SIX1 (BOR syndrome), CHD7 (CHARGE syndrome), and SOX10 (Waardenburg syndrome). We identified transforming growth factor beta-induced (Tgfbi), an extracellular integrin-interacting protein, as a putative target of Six1 that is required for normal otic vesicle formation. Our findings demonstrate the application of this Xenopus dataset to understanding the dynamic regulation of proteins during otic development and to discovery of additional candidates for human CHL.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
4
|
Seemann S, Dubs M, Koczan D, Salapare HS, Ponche A, Pieuchot L, Petithory T, Wartenberg A, Staehlke S, Schnabelrauch M, Anselme K, Nebe JB. Response of Osteoblasts on Amine-Based Nanocoatings Correlates with the Amino Group Density. Molecules 2023; 28:6505. [PMID: 37764281 PMCID: PMC10534789 DOI: 10.3390/molecules28186505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).
Collapse
Affiliation(s)
- Susanne Seemann
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Hernando S. Salapare
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Tatiana Petithory
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Annika Wartenberg
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | | | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - J. Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
5
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
6
|
Rubin J, van Wijnen AJ, Uzer G. Architectural control of mesenchymal stem cell phenotype through nuclear actin. Nucleus 2022; 13:35-48. [PMID: 35133922 PMCID: PMC8837231 DOI: 10.1080/19491034.2022.2029297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing appreciation that architectural components of the nucleus regulate gene accessibility by altering chromatin organization. While nuclear membrane connector proteins link the mechanosensitive actin cytoskeleton to the nucleoskeleton, actin's contribution to the inner architecture of the nucleus remains enigmatic. Control of actin transport into the nucleus, plus the presence of proteins that control actin structure (the actin tool-box) within the nucleus, suggests that nuclear actin may support biomechanical regulation of gene expression. Cellular actin structure is mechanoresponsive: actin cables generated through forces experienced at the plasma membrane transmit force into the nucleus. We posit that dynamic actin remodeling in response to such biomechanical cues provides a novel level of structural control over the epigenetic landscape. We here propose to bring awareness to the fact that mechanical forces can promote actin transfer into the nucleus and control structural arrangements as illustrated in mesenchymal stem cells, thereby modulating lineage commitment.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont Medical School, Burlington, Vt, USA
| | - Gunes Uzer
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA
| |
Collapse
|
7
|
Rodríguez-Quiroz R, Valdebenito-Maturana B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun Biol 2022; 5:1063. [PMID: 36202992 PMCID: PMC9537157 DOI: 10.1038/s42003-022-04020-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Transposable Elements (TEs) contribute to the repetitive fraction in almost every eukaryotic genome known to date, and their transcriptional activation can influence the expression of neighboring genes in healthy and disease states. Single cell RNA-Seq (scRNA-Seq) is a technical advance that allows the study of gene expression on a cell-by-cell basis. Although a current computational approach is available for the single cell analysis of TE expression, it omits their genomic location. Here we show SoloTE, a pipeline that outperforms the previous approach in terms of computational resources and by allowing the inclusion of locus-specific TE activity in scRNA-Seq expression matrixes. We then apply SoloTE to several datasets to reveal the repertoire of TEs that become transcriptionally active in different cell groups, and based on their genomic location, we predict their potential impact on gene expression. As our tool takes as input the resulting files from standard scRNA-Seq processing pipelines, we expect it to be widely adopted in single cell studies to help researchers discover patterns of cellular diversity associated with TE expression.
Collapse
Affiliation(s)
- Rocío Rodríguez-Quiroz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
8
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
9
|
Early Signs of Molecular Defects in iPSC-Derived Neural Stems Cells from Patients with Familial Parkinson’s Disease. Biomolecules 2022; 12:biom12070876. [PMID: 35883433 PMCID: PMC9313424 DOI: 10.3390/biom12070876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, classically associated with extensive loss of dopaminergic neurons of the substantia nigra pars compacta. The hallmark of the disease is the accumulation of pathogenic conformations of the presynaptic protein, α-synuclein (αSyn), and the formation of intraneuronal protein aggregate inclusions. Neurodegeneration of dopamine neurons leads to a prominent dopaminergic deficiency in the basal ganglia, responsible for motor disturbances. However, it is now recognized that the disease involves more widespread neuronal dysfunction, leading to early and late non-motor symptoms. The development of in vitro systems based on the differentiation of human-induced pluripotent stem cells provides us the unique opportunity to monitor alterations at the cellular and molecular level throughout the differentiation procedure and identify perturbations that occur early, even at the neuronal precursor stage. Here we aim to identify whether p.A53T-αSyn induced disturbances at the molecular level are already present in neural precursors. Towards this, we present data from transcriptomics analysis of control and p.A53T-αSyn NPCs showing altered expression in transcripts involved in axon guidance, adhesion, synaptogenesis, ion transport, and metabolism. The comparative analysis with the transcriptomics profile of p.A53T-αSyn neurons shows both distinct and overlapping pathways leading to neurodegeneration while meta-analysis with transcriptomics data from both neurodegenerative and neurodevelopmental disorders reveals that p.A53T-pathology has a significant overlap with the latter category. This is the first study showing that molecular dysregulation initiates early at the p.A53T-αSyn NPC level, suggesting that synucleinopathies may have a neurodevelopmental component.
Collapse
|
10
|
Benítez R, Núñez Y, Ayuso M, Isabel B, Fernández-Barroso MA, De Mercado E, Gómez-Izquierdo E, García-Casco JM, López-Bote C, Óvilo C. Changes in Biceps femoris Transcriptome along Growth in Iberian Pigs Fed Different Energy Sources and Comparative Analysis with Duroc Breed. Animals (Basel) 2021; 11:ani11123505. [PMID: 34944282 PMCID: PMC8697974 DOI: 10.3390/ani11123505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The genetic mechanisms that regulate biological processes, such as skeletal muscle development and growth, or intramuscular fat deposition, have attracted great interest, given their impact on production traits and meat quality. In this sense, a comparison of the transcriptome of skeletal muscle between phenotypically different pig breeds, or along growth, could be useful to improve the understanding of the molecular processes underlying the differences in muscle metabolism and phenotypic traits, potentially driving the identification of causal genes, regulators and metabolic pathways involved in their variability. Abstract This experiment was conducted to investigate the effects of developmental stage, breed, and diet energy source on the genome-wide expression, meat quality traits, and tissue composition of biceps femoris muscle in growing pure Iberian and Duroc pigs. The study comprised 59 Iberian (IB) and 19 Duroc (DU) animals, who started the treatment at an average live weight (LW) of 19.9 kg. The animals were kept under identical management conditions and fed two diets with different energy sources (6% high oleic sunflower oil or carbohydrates). Twenty-nine IB animals were slaughtered after seven days of treatment at an average LW of 24.1 kg, and 30 IB animals plus all the DU animals were slaughtered after 47 days at an average LW of 50.7 kg. The main factors affecting the muscle transcriptome were age, with 1832 differentially expressed genes (DEGs), and breed (1055 DEGs), while the effect of diet on the transcriptome was very small. The results indicated transcriptome changes along time in Iberian animals, being especially related to growth and tissue development, extracellular matrix (ECM) composition, and cytoskeleton organization, with DEGs affecting relevant functions and biological pathways, such as myogenesis. The breed also affected functions related to muscle development and cytoskeleton organization, as well as functions related to solute transport and lipid and carbohydrate metabolism. Taking into account the results of the two main comparisons (age and breed effects), we can postulate that the Iberian breed is more precocious than the Duroc breed, regarding myogenesis and muscle development, in the studied growing stage.
Collapse
Affiliation(s)
- Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Miriam Ayuso
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Miguel A. Fernández-Barroso
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Eduardo De Mercado
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Emilio Gómez-Izquierdo
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
- Correspondence: ; Tel.: +34-91-3471492
| |
Collapse
|
11
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
13
|
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices. J Fungi (Basel) 2021; 7:jof7050392. [PMID: 34067785 PMCID: PMC8156393 DOI: 10.3390/jof7050392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages, cells effective in sensing, internalizing and killing Candida albicans, are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/Candida albicans interface. The present study has allowed us to detect differences on the activation of macrophages cultured on either human- or porcine-derived DAMs, evidencing changes in the macrophage actin cytoskeleton, such as distinct F-actin-rich membrane structures to surround the pathogen. The macrophage morphological changes observed on these four DAMs are key to understand the defense capability of these cells against this fungal pathogen. This work has contributed to the knowledge of the influence that the extracellular matrix and its components can exert on macrophage metabolism, immunocompetence and capacity to respond to the microenvironment in a possible infection scenario.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Nerea Garcia-Urkia
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| |
Collapse
|