1
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
An L, Chang S, Hu Y, Li Y, Xu B, Zhang F, Yang L, Presicce GA, Du F. Efficient cryopreservation of mouse embryos by modified droplet vitrification (MDV). Cryobiology 2015; 71:70-6. [PMID: 26025881 DOI: 10.1016/j.cryobiol.2015.05.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/16/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to assess modified droplet vitrification (MDV) for the cryopreservation of early developmental mouse embryos. Mouse embryos were equilibrated in holding solution for 3 min followed by immersion in vitrification solution for 30-45 s, and then three embryos per 3-μL vitrification droplet were directly dropped into liquid nitrogen. Vitrified embryos were warmed to examine their developmental potential both in vitro and in vivo. The results demonstrated that MDV vitrified and warmed embryos had a survival rate of 98.1-99.6% (P>0.05); however, blastocyst development post warming and culture in vitro demonstrated that vitrified 4-celled, 8-celled, 16-celled, morulae, and blastocyst embryos had significant higher developmental potentials (94.7-99.5%) than those from zygotes (9.2%) and 2-celled embryos (85.7%) (P<0.05). Compared to CryoLoop and CryoTech vitrification, MDV showed similar results with regards to rates of survival, blastocyst development, but with the higher hatching rate (76.1% vs. 64.0-67.3%) (P<0.05). Cryopreservation by MDV resulted in a similar blastocyst developmental potential in 4-celled and 16 celled embryos from ICR (94.7-99.5%), C57BL/6J (94.7-96.4%), and their crossbred F1 strain (97.9-98.9%) (P>0.05). After embryo transfer of vitrified ICR embryos from 4-celled, 16-celled, morulae and blastocyst stage, 40.7-43.7% of the embryos developed into live offspring (P>0.05), but MDV vitrification resulted in the highest birth rate (43.8%) compared to CryoLoop (38.3%) and CryoTech (35.4%) (P<0.05), when 4-celled mouse embryos were used for vitrification. Our study clearly demonstrated that MDV is the most efficient vitrification to cryopreserve embryos at least 4-celled and advanced stages, which can be used to preserve important mouse genomes from different strains and different developmental stages.
Collapse
Affiliation(s)
- Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Shiwei Chang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Yeshu Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Yi Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Bowen Xu
- Lannuo Biotechnologies Wuxi Inc., Wuxi 214000, PR China
| | - Fenli Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Lan Yang
- Lannuo Biotechnologies Wuxi Inc., Wuxi 214000, PR China
| | | | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China; Renova Life Inc., College Park, MD 20742, USA.
| |
Collapse
|