1
|
Kaplan JB, Assa M, Mruwat N, Sailer M, Regmi S, Kridin K. Facultatively Anaerobic Staphylococci Enable Anaerobic Cutibacterium Species to Grow and Form Biofilms Under Aerobic Conditions. Microorganisms 2024; 12:2601. [PMID: 39770803 PMCID: PMC11678309 DOI: 10.3390/microorganisms12122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Facultatively anaerobic Staphylococcus spp. and anaerobic Cutibacterium spp. are among the most prominent bacteria on human skin. Although skin microbes generally grow as multispecies biofilms, few studies have investigated the interaction between staphylococci and Cutibacterium spp. in dual-species biofilms. Here, we measured the mono- and dual-species biofilm formation of four staphylococcal species (S. epidermidis, S. hominis, S. capitis, and S. aureus) and two Cutibacterium spp. (C. acnes and C. avidum) cultured in vitro under both aerobic and anaerobic conditions. The biofilms were quantitated by rinsing them to remove planktonic cells, detaching the biofilm bacteria via sonication, and enumerating the cells by dilution plating. When cultured alone, staphylococci formed biofilms under both aerobic and anaerobic conditions, whereas Cutibacterium spp. formed biofilms only under anaerobic conditions. In co-culture, staphylococcal biofilm formation was unaffected by the presence of Cutibacterium spp., regardless of oxygen availability. However, Cutibacterium spp. biofilm formation was significantly enhanced in the presence of staphylococci, enabling robust growth under both anaerobic and aerobic conditions. Fluorescence confocal microscopy of the aerobic dual-species biofilms suggested that staphylococci create anaerobic niches at the base of the biofilm where C. acnes can grow. These findings demonstrate that staphylococci facilitate the colonization of Cutibacterium spp. in oxygen-rich environments, potentially explaining their presence in high numbers on the oxygen-exposed stratum corneum.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel; (N.M.); (K.K.)
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Noor Mruwat
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel; (N.M.); (K.K.)
| | - Miloslav Sailer
- Kane Biotech Inc., Winnipeg, MB R3T 6G2, Canada; (M.S.); (S.R.)
| | - Suresh Regmi
- Kane Biotech Inc., Winnipeg, MB R3T 6G2, Canada; (M.S.); (S.R.)
| | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel; (N.M.); (K.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
2
|
Kashyap B, Padala SR, Kaur G, Kullaa A. Candida albicans Induces Oral Microbial Dysbiosis and Promotes Oral Diseases. Microorganisms 2024; 12:2138. [PMID: 39597528 PMCID: PMC11596246 DOI: 10.3390/microorganisms12112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Candida albicans are ubiquitous fungal organisms that colonize the oral cavity of healthy individuals without causing disease. C. albicans is an opportunistic microorganism with several virulent factors that influence the inflammatory process and allow it to invade tissues, evade host defense mechanisms, and release toxins, facilitating proliferation and degradation. At present, increasing emphasis is placed on polymicrobial interactions between C. albicans and various bacterial pathogens. Such interaction is mutually beneficial for both parties: it is competitive and antagonistic. Their complex interaction and colonization in the oral cavity serve as the basis for several oral diseases. The dispersion of C. albicans in saliva and the systemic circulation is noted in association with other bacterial populations, suggesting their virulence in causing disease. Hence, it is necessary to understand fungal-bacterial interactions for early detection and the development of novel therapeutic strategies to treat oral diseases. In this paper, we review the mutualistic interaction of C. albicans in oral biofilm formation and polymicrobial interactions in oral diseases. In addition, C. albicans virulence in causing biofilm-related oral diseases and its presence in saliva are discussed.
Collapse
Affiliation(s)
- Bina Kashyap
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| | | | - Gaganjot Kaur
- Shaheed Kartar Singh Sarabha Dental College & Hospital, Ludhiana 141105, India;
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
3
|
de Jongh CA, Bikker FJ, de Vries TJ, Werner A, Gibbs S, Krom BP. Porphyromonas gingivalis interaction with Candida albicans allows for aerobic escape, virulence and adherence. Biofilm 2024; 7:100172. [PMID: 38226024 PMCID: PMC10788424 DOI: 10.1016/j.bioflm.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
In the oral cavity Candida albicans interacts with many oral bacteria, including Porphyromonas gingivalis, both physically and metabolically. The aim of this in vitro study was to characterize these interactions and study their effects on the survival of P. gingivalis. First, metabolic interactions were evaluated by counting the colony forming units (CFU) after co-culturing. The results indicated that the anaerobic bacterium P. gingivalis survives under aerobic conditions when co-cultured with C. albicans. This is due to the oxygen consumption by C. albicans as determined by a reduction in survival upon the addition of Antimycin A. By measuring the protease activity, it was found that the presence of C. albicans induced gingipain activity by P. gingivalis, which is an important virulence factor. Adherence of P. gingivalis to hyphae of C. albicans was observed with a dynamic flow system. Using various C. albicans mutants, it was shown that the mechanism of adhesion was mediated by the cell wall adhesins, members of the agglutinin-like sequence (Als) family: Als3 and Als1. Furthermore, the two microorganisms could be co-cultured into forming a biofilm in which P. gingivalis can survive under aerobic culturing conditions, which was imaged using scanning electron microscopy. This study has further elucidated mechanisms of interaction, virulence acquisition and survival of P. gingivalis when co-cultured with C. albicans. Such survival could be essential for the pathogenicity of P. gingivalis in the oxygen-rich niches of the oral cavity. This study has emphasized the importance of interaction between different microbes in promoting survival, virulence and attachment of pathogens, which could be essential in facilitating penetration into the environment of the host.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Jin P, Wang L, Chen D, Chen Y. Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence. J Oral Microbiol 2024; 16:2339161. [PMID: 38606339 PMCID: PMC11008315 DOI: 10.1080/20002297.2024.2339161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Objective To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification. Methods A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity. Results C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC. Conclusion The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.
Collapse
Affiliation(s)
- Pingping Jin
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Lu Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|
5
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
6
|
Cornejo Ulloa P, van der Veen MH, Brandt BW, Buijs MJ, Krom BP. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023; 6:100139. [PMID: 37621393 PMCID: PMC10447177 DOI: 10.1016/j.bioflm.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Sex steroid hormones (SSH) such as oestrogen, progesterone and testosterone are cholesterol derived molecules that regulate various physiological processes. They are present in both blood and saliva, where they come in contact with oral tissues and oral microorganisms. Several studies have confirmed the effect of these hormones on different periodontal-disease-associated bacteria, using single-species models. Bacteria can metabolize SSH, use them as alternative for vitamin K and also use them to induce the expression of virulence factors. However, it is still unclear what the effects of SSH are on the oral microbiome. In this study, we investigated the effects of four SSH on commensal in vitro oral biofilms. Saliva-derived oral biofilms were grown in Mc Bain medium without serum or menadione using the Amsterdam Active-Attachment model. After initial attachment in absence of SSH, the biofilms were grown in medium containing either oestradiol, oestriol, progesterone or testosterone at a 100-fold physiological concentration. Menadione or ethanol were included as positive control and negative control, respectively. After 12 days with daily medium refreshments, biofilm formation, biofilm red fluorescence and microbial composition were determined. The supernatants were tested for proteolytic activity using the Fluorescence Resonance Energy Transfer Analysis (FRET). No significant differences were found in biofilm formation, red fluorescence or microbial composition in any of the tested groups. Samples grown in presence of progesterone and oestradiol showed proteolytic activity comparable to biofilms supplemented with menadione. In contrast, testosterone and oestriol showed a decreased proteolytic activity compared to biofilms grown in presence of menadione. None of the tested SSH had large effects on the ecology of in vitro oral biofilms, therefore a direct translation of our results into in vivo effects is not possible. Future experiments should include other host factors such as oral tissues, immune cells and combinations of SSH as present in saliva, in order to have a more accurate picture of the phenomena taking place in both males and females.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Monique H. van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Katrak C, Garcia BA, Dornelas-Figueira LM, Nguyen M, Williams RB, Lorenz MC, Abranches J. Catalase produced by Candida albicans protects Streptococcus mutans from H 2O 2 stress-one more piece in the cross-kingdom synergism puzzle. mSphere 2023; 8:e0029523. [PMID: 37607054 PMCID: PMC10597455 DOI: 10.1128/msphere.00295-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Co-infection with Streptococcus mutans and Candida albicans is associated with dental caries, and their co-cultivation results in enhanced biofilm matrix production that contributes to increased virulence and caries risk. Moreover, the catalase-negative S. mutans demonstrates increased oxidative stress tolerance when co-cultivated in biofilms with C. albicans, a catalase-producing yeast. Here, we sought to obtain mechanistic insights into the increased H2O2 tolerance of S. mutans when co-cultivated with clinical isolates of Candida glabrata, Candida tropicalis, and C. albicans. Additionally, the C. albicans SC5314 laboratory strain, its catalase mutant (SC5314Δcat1), and S. mutans UA159 and its glucosyltransferase B/C mutant (UA159ΔgtfB/C) were grown as single- and dual-species biofilms. Time-kill assays revealed that upon acute H2O2 challenge, the survival rates of S. mutans in dual-species biofilms with the clinical isolates and C. albicans SC5314 were greater than when paired with SC5314Δcat1 or as a single-species biofilm. Importantly, this protection was independent of glucan production through S. mutans GtfB/C. Transwell assays and treatment with H2O2-pre-stimulated C. albicans SC5314 supernatant revealed that this protection is contact-dependent. Biofilm stability assays with sublethal H2O2 or peroxigenic Streptococcus A12 challenge resulted in biomass reduction of single-species S. mutans UA159 and dual-species with SC5314Δcat1 biofilms compared to UA159 biofilms co-cultured with C. albicans SC5314. S. mutans oxidative stress genes were upregulated in single-species biofilms when exposed to H2O2, but not when S. mutans was co-cultivated with C. albicans SC5314. Here, we uncovered a novel, contact-dependent, synergistic interaction in which the catalase of C. albicans protects S. mutans against H2O2. IMPORTANCE It is well established that co-infection with the gram-positive caries-associated bacterium Streptococcus mutans and the yeast pathobiont Candida albicans results in aggressive forms of caries in humans and animal models. Together, these microorganisms form robust biofilms through enhanced production of extracellular polysaccharide matrix. Further, co-habitation in a biofilm community appears to enhance these microbes' tolerance to environmental stressors. Here, we show that catalase produced by C. albicans protects S. mutans from H2O2 stress in a biofilm matrix-independent manner. Our findings uncovered a novel synergistic trait between these two microorganisms that could be further exploited for dental caries prevention and control.
Collapse
Affiliation(s)
- Callahan Katrak
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Restorative Dental Sciences, University of Florida College of Dentistry, Gainesville, Florida, USA
| | | | - Mary Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Robert B. Williams
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
8
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
9
|
Smędra A, Berent J. The Influence of the Oral Microbiome on Oral Cancer: A Literature Review and a New Approach. Biomolecules 2023; 13:biom13050815. [PMID: 37238685 DOI: 10.3390/biom13050815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In our recent article (Smędra et al.: Oral form of auto-brewery syndrome. J Forensic Leg Med. 2022; 87: 102333), we showed that alcohol production can occur in the oral cavity (oral auto-brewery syndrome) due to a disruption in the microbiota (dysbiosis). An intermediate step on the path leading to the formation of alcohol is acetaldehyde. Typically, acetic aldehyde is transformed into acetate particles inside the human body via acetaldehyde dehydrogenase. Unfortunately, acetaldehyde dehydrogenase activity is low in the oral cavity, and acetaldehyde remains there for a long time. Since acetaldehyde is a recognised risk factor for squamous cell carcinoma arising from the oral cavity, we decided to analyse the relationship linking the oral microbiome, alcohol, and oral cancer using the narrative review method, based on browsing articles in the PubMed database. In conclusion, enough evidence supports the speculation that oral alcohol metabolism must be assessed as an independent carcinogenic risk. We also hypothesise that dysbiosis and the production of acetaldehyde from non-alcoholic food and drinks should be treated as a new factor for the development of cancer.
Collapse
Affiliation(s)
- Anna Smędra
- Department of Forensic Medicine, Medical University of Lodz, 91-304 Lodz, Poland
| | - Jarosław Berent
- Department of Forensic Medicine, Medical University of Lodz, 91-304 Lodz, Poland
| |
Collapse
|
10
|
Wijesinghe GK, Nobbs AH, Bandara HMHN. Cross-kingdom Microbial Interactions Within the Oral Cavity and Their Implications for Oral Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Abstract
Purpose of Review
This review serves to highlight the cross-kingdom interactions that can occur within the human oral cavity between fungus Candida albicans and oral bacteria, and their impact on the delicate balance between oral health and disease.
Recent Findings
A growing number of physical, chemical, and metabolic networks have been identified that underpin these cross-kingdom interactions. Moreover, these partnerships are often synergistic and can modulate microbial burden or virulence. This, in turn, can drive the onset or progression of oral diseases such as dental caries, periodontitis, denture-associated stomatitis, and oral cancer.
Summary
The impact of cross-kingdom interactions on the cellular, biochemical, and communal composition of oral microbial biofilms is increasingly clear. With growing insight into these processes at the molecular level, so this knowledge can be used to better inform the development of novel strategies to manipulate the oral microbiota to promote oral health and combat oral disease.
Collapse
|
11
|
High-Throughput Sequencing of Oral Microbiota in Candida Carriage Sjögren's Syndrome Patients: A Pilot Cross-Sectional Study. J Clin Med 2023; 12:jcm12041559. [PMID: 36836095 PMCID: PMC9964208 DOI: 10.3390/jcm12041559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND This study sought to characterize the saliva microbiota of Candida carriage Sjögren's syndrome (SS) patients compared to oral candidiasis and healthy patients by high-throughput sequencing. METHODS Fifteen patients were included, with five Candida carriage SS patients (decayed, missing, and filled teeth (DMFT) score 22), five oral candidiasis patients (DMFT score 17), and five caries active healthy patients (DMFT score 14). Bacterial 16S rRNA was extracted from rinsed whole saliva. PCR amplification generated DNA amplicons of the V3-V4 hypervariable region, which were sequenced on an Illumina HiSeq 2500 sequencing platform and compared and aligned to the SILVA database. Taxonomy abundance and community structure diversity was analyzed using Mothur software v1.40.0. RESULTS A total of 1016/1298/1085 operational taxonomic units (OTUs) were obtained from SS patients/oral candidiasis patient/healthy patients. Treponema, Lactobacillus, Streptococcus, Selenomonas, and Veillonella were the primary genera in the three groups. The most abundant significantly mutative taxonomy (OTU001) was Veillonella parvula. Microbial diversity (alpha diversity and beta diversity) was significantly increased in SS patients. ANOSIM analyses revealed significantly different microbial compositional heterogeneity in SS patients compared to oral candidiasis and healthy patients. CONCLUSION Microbial dysbiosis differs significantly in SS patients independent of oral Candida carriage and DMFT.
Collapse
|
12
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
13
|
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol 2022; 13:911623. [PMID: 36406433 PMCID: PMC9668886 DOI: 10.3389/fmicb.2022.911623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a symbiotic fungus that commonly colonizes on oral mucosal surfaces and mainly affects immuno-compromised individuals. Polymicrobial interactions between C. albicans and oral microbes influence the cellular and biochemical composition of the biofilm, contributing to change clinically relevant outcomes of biofilm-related oral diseases, such as pathogenesis, virulence, and drug-resistance. Notably, the symbiotic relationships between C. albicans and oral bacteria have been well-documented in dental caries, oral mucositis, endodontic and periodontal diseases, implant-related infections, and oral cancer. C. albicans interacts with co-existing oral bacteria through physical attachment, extracellular signals, and metabolic cross-feeding. This review discusses the bacterial-fungal interactions between C. albicans and different oral bacteria, with a particular focus on the underlying mechanism and its relevance to the development and clinical management of oral diseases.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Téllez-Corral MA, Herrera-Daza E, Cuervo-Jimenez HK, Arango-Jimenez N, Morales-Vera DZ, Velosa-Porras J, Latorre-Uriza C, Escobar-Arregoces FM, Hidalgo-Martinez P, Cortés ME, Roa-Molina NS, Otero L, Parra-Giraldo CM. Patients with obstructive sleep apnea can favor the predisposing factors of periodontitis by the presence of P. melaninogenica and C. albicans, increasing the severity of the periodontal disease. Front Cell Infect Microbiol 2022; 12:934298. [PMID: 36189359 PMCID: PMC9519896 DOI: 10.3389/fcimb.2022.934298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Objective The aim of this study was to analyze the cultivable oral microbiota of patients with obstructive sleep apnea (OSA) and its association with the periodontal condition. Methods The epidemiology profile of patients and their clinical oral characteristics were determined. The microbiota was collected from saliva, subgingival plaque, and gingival sulcus of 93 patients classified into four groups according to the periodontal and clinical diagnosis: Group 1 (n = 25), healthy patients; Group 2 (n = 17), patients with periodontitis and without OSA; Group 3 (n = 19), patients with OSA and without periodontitis; and Group 4 (n = 32), patients with periodontitis and OSA. Microbiological samples were cultured, classified, characterized macroscopically and microscopically, and identified by MALDI-TOF-MS. The distribution of complexes and categories of microorganisms and correlations were established for inter- and intra-group of patients and statistically evaluated using the Spearman r test (p-value <0.5) and a multidimensional grouping analysis. Result There was no evidence between the severity of OSA and periodontitis (p = 0.2813). However, there is a relationship between the stage of periodontitis and OSA (p = 0.0157), with stage III periodontitis being the one with the highest presence in patients with severe OSA (prevalence of 75%; p = 0.0157), with more cases in men. The greatest distribution of the complexes and categories was found in oral samples of patients with periodontitis and OSA (Group 4 P-OSA); even Candida spp. were more prevalent in these patients. Periodontitis and OSA are associated with comorbidities and oral conditions, and the microorganisms of the orange and red complexes participate in this association. The formation of the dysbiotic biofilm was mainly related to the presence of these complexes in association with Candida spp. Conclusion Periodontopathogenic bacteria of the orange complex, such as Prevotella melaninogenica, and the yeast Candida albicans, altered the cultivable oral microbiota of patients with periodontitis and OSA in terms of diversity, possibly increasing the severity of periodontal disease. The link between yeasts and periodontopathogenic bacteria could help explain why people with severe OSA have such a high risk of stage III periodontitis. Antimicrobial approaches for treating periodontitis in individuals with OSA could be investigated in vitro using polymicrobial biofilms, according to our findings.
Collapse
Affiliation(s)
- Mayra A. Téllez-Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Facultade de Odontología, Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eddy Herrera-Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Hayde K. Cuervo-Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Natalia Arango-Jimenez
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Darena Z. Morales-Vera
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Juliana Velosa-Porras
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Catalina Latorre-Uriza
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Francina M. Escobar-Arregoces
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Periodoncia, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Patricia Hidalgo-Martinez
- Clínica del Sueño, Hospital Universitario San Ignacio y Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Maria E. Cortés
- Facultade de Odontología, Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nelly S. Roa-Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Claudia M. Parra-Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- *Correspondence: Claudia M. Parra-Giraldo,
| |
Collapse
|
15
|
Radaic A, Brody H, Contreras F, Hajfathalian M, Lucido L, Kamarajan P, Kapila YL. Nisin and Nisin Probiotic Disrupt Oral Pathogenic Biofilms and Restore Their Microbiome Composition towards Healthy Control Levels in a Peri-Implantitis Setting. Microorganisms 2022; 10:1336. [PMID: 35889055 PMCID: PMC9324437 DOI: 10.3390/microorganisms10071336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Peri-implantitis is characterized by chronic inflammation of the peri-implant supporting tissues that progressively and irreversibly leads to bone loss and, consequently, implant loss. Similar to periodontal disease, oral dysbiosis is thought to be a driver of peri-implantitis. However, managing peri-implantitis with traditional treatment methods, such as nonsurgical debridement or surgery, is not always successful. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents since they are considered safe for humans and the environment. Specifically, the probiotic Lactococcus lactis produces nisin, which has been used worldwide for food preservation. The objective of this study was to determine whether nisin and the wild-type (WT) nisin-producing L. lactis probiotic can disrupt oral pathogenic biofilms and promote a healthier oral microbiome within these oral biofilms on titanium discs. Using confocal imaging and 16S rRNA sequencing, this study revealed that nisin and WT L. lactis probiotic disrupt oral pathogenic biofilms in a peri-implantitis setting in vitro. More specifically, nisin decreased the viability of the pathogen-spiked biofilms dose-dependently from 62.53 ± 3.69% to 54.26 ± 3.35% and 44.88 ± 2.98%, respectively. Similarly, 105 CFU/mL of WT L. lactis significantly decreased biofilm viability to 52.45 ± 3.41%. Further, both treatments shift the composition, relative abundance, and diversity levels of these biofilms towards healthy control levels. A total of 1 µg/mL of nisin and 103 CFU/mL of WT L. lactis were able to revert the pathogen-mediated changes in the Proteobacteria (from 80.5 ± 2.9% to 75.6 ± 2.0%, 78.0 ± 2.8%, and 75.1 ± 5.3%, respectively) and Firmicutes (from 11.6 ± 1.6% to 15.4 ± 1.3%, 13.8 ± 1.8%, and 13.7 ± 2.6%, respectively) phyla back towards control levels. Thus, nisin and its nisin-producing L. lactis probiotic may be useful in treating peri-implantitis by promoting healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Fernando Contreras
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Maryam Hajfathalian
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luke Lucido
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Division of Oral and Systemic Health Sciences, Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 2022; 8:38. [PMID: 35585074 PMCID: PMC9117221 DOI: 10.1038/s41522-022-00279-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Collapse
|
17
|
Alshanta OA, Albashaireh K, McKloud E, Delaney C, Kean R, McLean W, Ramage G. Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm 2022; 4:100072. [PMID: 35313556 PMCID: PMC8933684 DOI: 10.1016/j.bioflm.2022.100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Om Alkhir Alshanta
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Khawlah Albashaireh
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Emily McKloud
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Christopher Delaney
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - William McLean
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gordon Ramage
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
- Corresponding author.
| |
Collapse
|
18
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
19
|
Probiotics Reduce Vaginal Candidiasis in Pregnant Women via Modulating Abundance of Candida and Lactobacillus in Vaginal and Cervicovaginal Regions. Microorganisms 2022; 10:microorganisms10020285. [PMID: 35208739 PMCID: PMC8877909 DOI: 10.3390/microorganisms10020285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
We previously reported on the effects of a lactobacilli probiotic (SynForU-HerCare; two capsules/day of 9.5 log CFU/capsule) in improving symptoms of vaginal irritation, discharge and burning in pregnant women with vaginal candidiasis upon administration for 8 weeks, accompanied by improved emotional and social quality of life parameters. Thus, the present study aimed to analyse vaginal microbiota and inflammatory changes in hope to better understand the improved clinical symptoms as observed previously. Patients in the probiotic group showed a decreased abundance of Candida glabrata after 8 weeks (p = 0.009) in the lower vaginal region, while patients in the placebo group did not show any changes over time. In the higher vaginal and cervicovaginal regions, patients in the placebo group showed a decreased abundance of Candida albicans only within 4 weeks (p < 0.05) but no changes in abundance of C. glabrata over time, while patients in the probiotic group showed a continuous decreased abundance of C. albicans and C. glabrata over 8 weeks (p < 0.05). Patients in the placebo group also had a decreased abundance of Lactobacillus crispatus over 4 weeks (p = 0.023) in the lower vaginal region and a decreased abundance of L. jensenii over 8 weeks in the cervicovaginal region (p = 0.001). Meanwhile, patients in the probiotic group had an increased abundance of L. crispatus in the lower vaginal region after 8 weeks (p = 0.012) and Lactobacillus jensenii over 4 weeks in the cervicovaginal region (p < 0.001). Inflammation may have occurred in both low and high vaginal regions, predominantly observed by the increased concentration of pro-inflammatory cytokine TNF-alpha in patients from the placebo group (p < 0.05), while the administration of probiotics has shortened the period of inflammation as observed from the reduced need for anti-inflammatory cytokine IL-4 and IL-10 over time (p < 0.05). Taken together, our present new data further support previous findings that probiotic SynForU-HerCare had a beneficial effect against vaginal candidiasis in pregnant women via modulation of the vaginal microbiota and microenvironment.
Collapse
|
20
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Du Q, Yuan S, Zhao S, Fu D, Chen Y, Zhou Y, Cao Y, Gao Y, Xu X, Zhou X, He J. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. BIOFOULING 2021; 37:964-974. [PMID: 34839774 DOI: 10.1080/08927014.2021.1993836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study utilized an in vitro dual-species biofilm model and an in vivo rat post-treatment endodontic disease (PTED) model to investigate whether co-infection of Candida albicans and Enterococcus faecalis would aggravate periapical lesions. The results showed that co-culturing yielded a thicker and denser biofilm more tolerant to detrimental stresses compared with the mono-species biofilm, such as a starvation-alkalinity environment, mechanical shear force and bactericidal chemicals. Consistently, co-inoculation of E. faecalis and C. albicans significantly increased the extent of in vivo periapical lesions compared with mono-species infection. Specifically, coexistence of both microorganisms increased osteoclastic bone resorption and suppressed osteoblastic bone formation. The synergistic effects also up-regulated inflammatory cytokines including TNF-α and IL-6. In summary, coexistence of C. albicans and E. faecalis increased periapical lesions by enhanced biofilm virulence.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Shasha Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuangyuan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yifei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangpei Cao
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, EI Paso, TX, USA
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Li H, Sun J, Wang X, Shi J. Oral microbial diversity analysis among atrophic glossitis patients and healthy individuals. J Oral Microbiol 2021; 13:1984063. [PMID: 34676060 PMCID: PMC8526005 DOI: 10.1080/20002297.2021.1984063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Atrophic glossitis is a common disease in oral mucosal diseases. The Current studies have found the human oral cavity contains numerous and diverse microorganisms, their composition and diversity can be changed by various oral diseases. To understand the composition and diversity of oral microbiome in atrophic glossitis is better to explore the cause and mechanism of atrophic glossitis. The salivary microbiome is comprised of indigenous oral microorganisms that are specific to each person, exhibits long-term stability. We used llumina MiSeq high-throughput sequencing based on the V3-V4 region of the bacterial 16S rRNA gene and the internal transcribed spacer (ITS) region of fungal rRNA genes from saliva in atrophic glossitis patients and healthy individuals to explore the composition and diversity of oral microbiome. In our reports, it showed a lower diversity of bacteria and fungi in atrophic glossitis patients than in healthy individuals. The data further suggests that Lactobacillus and Saccharomycetales were potential indicators for the initiation and development of atrophic glossitis. Moreover, we also discuss the relationship between the oral microbial ecology and atrophic glossitis.
Collapse
Affiliation(s)
- Hong Li
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Jing Sun
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Xiaoyan Wang
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Jing Shi
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| |
Collapse
|
23
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
24
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
25
|
Occurrence of Candida albicans in Periodontitis. Int J Dent 2021; 2021:5589664. [PMID: 34135968 PMCID: PMC8179758 DOI: 10.1155/2021/5589664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Periodontal diseases are the result of an imbalance between the microbiota and immune defense. The role of yeast in the pathogenesis of these diseases has been studied. This study aims to assess the occurrence of Candida albicans in periodontitis. Materials and Methods Fifty subjects were recruited for the study (15 healthy individuals and 35 periodontitis subjects). The periodontal examination and plaque sampling were carried out for all patients. Candida albicans identification was based on culture, direct examination, and polymerase chain reaction. The statistical analysis was performed by SPSS 20 (SPSS Inc., Chicago, IL, USA). Results Twenty percent of the diseased group harbored Candida albicans which was slightly higher than in the healthy group (7%), suggesting that, under normal conditions, yeast does not grow easily in subgingival sites. However, no significant difference between the healthy and periodontitis groups (p=0.23) was found. Our results also indicated that the presence of Candida albicans was neither gender nor age related in the studied groups. Conclusion The results of this study suggest that Candida albicans occurs in periodontitis. More studies are needed to clarify the potential role of this yeast in different stages and forms of the disease.
Collapse
|
26
|
Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. THE ISME JOURNAL 2021; 15:894-908. [PMID: 33149208 PMCID: PMC8026629 DOI: 10.1038/s41396-020-00823-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
Abstract
Candida albicans has been detected in root carious lesions. The current study aimed to explore the action of this fungal species on the microbial ecology and the pathogenesis of root caries. Here, by analyzing C. albicans in supragingival dental plaque collected from root carious lesions and sound root surfaces of root-caries subjects as well as caries-free individuals, we observed significantly increased colonization of C. albicans in root carious lesions. Further in vitro and animal studies showed that C. albicans colonization increased the cariogenicity of oral biofilm by altering its microbial ecology, leading to a polymicrobial biofilm with enhanced acidogenicity, and consequently exacerbated tooth demineralization and carious lesion severity. More importantly, we demonstrated that the cariogenicity-promoting activity of C. albicans was dependent on PHR2. Deletion of PHR2 restored microbial equilibrium and led to a less cariogenic biofilm as demonstrated by in vitro artificial caries model or in vivo root-caries rat model. Our data indicate the critical role of C. albicans infection in the occurrence of root caries. PHR2 is the major factor that determines the ecological impact and caries-promoting activity of C. albicans in a mixed microbial consortium.
Collapse
|
27
|
Inhibitory Effect of Lactobacillus plantarum CCFM8724 towards Streptococcus mutans- and Candida albicans-Induced Caries in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4345804. [PMID: 33414892 PMCID: PMC7769668 DOI: 10.1155/2020/4345804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus mutans is a recognized cariogenic bacterium and a major producer of biofilm matrix. The presence of Candida albicans in dental plaque with S. mutans enhances the virulence leading to the onset of rampant caries which is similar to early childhood caries (ECC). The purpose of this study was to explore the effect of Lactobacillus plantarum CCFM8724 (CCFM8724) on the treatment and prevention of dental caries induced by S. mutans and C. albicans in vivo. Rats were divided into 6 groups: the control group and model group, 2 treatment groups, and 2 prevention groups (0.02% chlorhexidine or CCFM8724). The fluctuation of microbial colonization and the change of bacteria flora in rat oral cavity after sowing of L. plantarum CCFM8724 were investigated by colony-forming units (CFU) and microflora analysis. The caries of rats were assessed by microcomputed tomography (micro-CT) and Keyes scoring method. The results showed that L. plantarum CCFM8724 in both the treatment and prevention groups could significantly decrease the population of S. mutans and C. albicans in the rats' oral cavity (p < 0.001), the mineral loss of enamel (p < 0.05), and the scores of caries (p < 0.05). Besides, L. plantarum CCFM8724 exhibited better effects than chlorhexidine. Hence, L. plantarum CCFM8724 was proved to be a potential oral probiotic on caries treatment and prevention in vivo and it may have the prospect of application in dental caries (especially ECC) prevention products.
Collapse
|
28
|
Linossier AG, Martinez B, Valenzuela CY. Quantitative interactions between Candida albicans and the mutans streptococci in patients with Down Syndrome. Med Oral Patol Oral Cir Bucal 2021; 26:e1-e7. [PMID: 33247579 PMCID: PMC7806344 DOI: 10.4317/medoral.23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/28/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Oral microorganisms produce damage through the transfer to bloodstream, colonizing other tissues or direct damage in the oral cavity. Aim to study the quantitative interactions between C. albicans and the mutans streptococci and ms serotypes in the saliva of the oral cavity of patients with Down syndrome (DS). MATERIAL AND METHODS Included 120 patients of both genders, 60 patients with Down syndrome (DS) and 60 pa- tients as a control group (CG). Samples of saliva were taken, and bacteria and fungi were grown on TYCSB and Saboureaud agar. Microbiological, serological and quantitative analyses were performed to determine the kind of isolated of microorganisms corresponding to the ms c, e, f and k for species S. mutans and d and g for S. sobrinus and C. albicans. Electronic scanning microscopy was employed to visualize and confirm the colonies under study. Statistics analysis included t-test proofs for matched data test, Scheffé and ANOVA. RESULTS Forming units (CFU) per mL of saliva of C. albicans a significant difference was observed among DS CONCLUSIONS These results show a significant non-random association between these two commensal microorganisms in different patient groups.
Collapse
|
29
|
Keystone salivary mycobiome in postpartum period in health and disease conditions. J Mycol Med 2020; 31:101101. [PMID: 33321299 DOI: 10.1016/j.mycmed.2020.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
Despite of known pathogenic potential of human mycobiome in initiation and progression of oral disorders, it is poorly characterized and understudied due to its small number in oral cavity. In the present study, salivary mycobiome of three postpartum females along with one healthy non-pregnant female was investigated by targeting ITS region. A total of 55 genera and 92 species were detected with predominant genera: Candida (12.2%) followed by Saccharomyces (9.27%), Phialosimplex (9.19%), Termitomyces (6.96%), Penicillium (6.85%), Aspergillus (6.56%), Olpidium (5.15%), Cochliobolus (4.78%), Malassezia (4.61%), Neurospora (4.3%), and Cristinia (3.04%) in all samples. Diversity increase was observed in postpartum group as compared to non-pregnant female. Stachybotrys, Geotrichum, Talaromyces, Leucosporidium, Acremonium, Wallemia, Eupenicillium, Septoria, Zymoseptoria, Coniosporium, Phialophora, and Mycosphaerella were genera detected only in postpartum group. Postpartum female with gingivitis and dental caries showed greater abundance of genus Saccharomyces, Phialosimplex, Candida, Olpidium, Cochliobolus, Malaseezia, Hyphodontia, Debaryomyces, Mrakia, and Nakaseomyces as compared to those postpartum females with good oral health. Among postpartum group female with oral health issues as well as who had preterm low weight birth (PLWB), showed reduced richness, evenness with elevated levels of Saccharomyces, Candida, Hyphodontia and Malassezia compared to the female having full term birth (FTB). These findings showed that, pregnancy with or without oral health issues is associated with oral microbial diversity change and there might be an association of changing fungal diversity with adverse pregnancy outcomes (APOs) like pre-term birth (PTB) and low weight birth (LWB).
Collapse
|
30
|
Balogh B, Somodi S, Tanyi M, Miszti C, Márton I, Kelentey B. Follow-up Study of Microflora Changes in Crevicular Gingival Fluid in Obese Subjects After Bariatric Surgery. Obes Surg 2020; 30:5157-5161. [PMID: 32996104 PMCID: PMC7719104 DOI: 10.1007/s11695-020-05006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
The objective of our study was to investigate the effect of weight loss on the crevicular microflora following bariatric surgery. Crevicular fluid samples were taken from 57 subjects: 22 were in the normal control group; 18 in the obese control group; and 17 patients had had bariatric surgery, who underwent a repeat sampling 6 to 12 months after the operation. Crevicular fluid samples were analyzed by MALDI-TOF MS analysis. After surgery and weight loss, the mean germ count increased, albeit not significantly. Also, Candida albicans and non-albicans Candida species: C. dubliniensis, C. kefyr, and C. lusitaniae appeared after surgery (p < 0.05) in subjects where Neisseria was either absent throughout or eliminated after surgery. However, periodontitis did not develop during this time in our subjects.
Collapse
Affiliation(s)
- Bettina Balogh
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| | - Sándor Somodi
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Tanyi
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Cecília Miszti
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Márton
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Barna Kelentey
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| |
Collapse
|
31
|
Ramadugu K, Blostein F, Bhaumik D, Jiang W, Davis E, Salzman E, Srinivasan U, Marrs CF, Neiswanger K, McNeil DW, Marazita ML, Foxman B. Co-occurrence of yeast, streptococci, dental decay, and gingivitis in the post-partum period: results of a longitudinal study. J Oral Microbiol 2020; 12:1746494. [PMID: 32363007 PMCID: PMC7178893 DOI: 10.1080/20002297.2020.1746494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Objective: The interactions between yeast and streptococci species that lead to dental decay and gingivitis are poorly understood. Our study describes these associations among a cohort of 101 post-partum women enrolled in the Center for Oral Health Research in Appalachia, 2012–2013. Methods: All eligible women without dental caries were included (n = 21) and the remainder were randomly sampled to represent the total number of decayed, missing, and filled teeth (DMFT) at enrollment. We used amplicon sequencing and qPCR of saliva from 2, 6, 12 and 24 visits to determine microbiome composition. Results: Active decay and generalized gingivitis were strongly predictive of each other. Using adjusted marginal models, Candida albicans and Streptococcus mutans combined were associated with active decay (OR = 3.13; 95% CI 1.26, 7.75). However, C. albicans alone (OR = 2.33; 95% CI: 0.81, 6.75) was associated with generalized gingivitis, but S. mutans alone was not (OR = 0.55; 95% CI: 0.21, 1.44). Models including microbiome community state types (CSTs) showed CSTs positively associated with active decay were negatively associated with generalized gingivitis. Discussion: C. albicans is associated with active decay and generalized gingivitis, but whether one or both are present depends on the structure of the co-existing microbial community.
Collapse
Affiliation(s)
- Kirtana Ramadugu
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Freida Blostein
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Deesha Bhaumik
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Wenwen Jiang
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Elyse Davis
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Elizabeth Salzman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Usha Srinivasan
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Carl F Marrs
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Oral Health Research in Appalachia, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, and West Virginia University, Morgantown, West Virginia, USA
| | - Daniel W McNeil
- Center for Oral Health Research in Appalachia, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, and West Virginia University, Morgantown, West Virginia, USA.,Departments of Psychology and Dental Practice & Rural Health, West Virginia University, Morgantown, WV, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Oral Health Research in Appalachia, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, and West Virginia University, Morgantown, West Virginia, USA.,Department of Human Genetics, Graduate School of Public Health; and Clinical and Translational Sciences Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, University of Michigan School of Public Health Department of Epidemiology, Ann Arbor, MI, USA.,Center for Oral Health Research in Appalachia, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, and West Virginia University, Morgantown, West Virginia, USA.,Departments of Psychology and Dental Practice & Rural Health, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
32
|
Bernard C, Girardot M, Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J Mycol Med 2020; 30:100909. [DOI: 10.1016/j.mycmed.2019.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022]
|
33
|
Abstract
The oral microbiota is complex, multikingdom, interactive, and involves extensive biofilm formation. While dominated by bacteria, Candida is a frequent member of this microbiota; however, several other potentially pathogenic fungi (among around 100 identified species) appear to reside in some individuals, including Cryptococcus, Aspergillus, and Fusarium. Oral candidiasis may manifest as a variety of disease entities in normal hosts and in the immunocompromised. These include pseudomembranous candidiasis (thrush), hyperplastic or atrophic (denture) candidiasis, linear gingival erythema, median rhomboid glossitis, and angular cheilitis. The purpose of this review is to describe the oral fungal microbiota (ie, oral mycobiota), common mouth diseases caused by its members, predisposing factors and treatment, and the potential for causing disseminated disease like their bacterial counterparts.
Collapse
Affiliation(s)
- Dennis J Baumgardner
- Department of Family Medicine, Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI; Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI; Center for Urban Population Health, Milwaukee, WI
| |
Collapse
|
34
|
Bai F, Cai Z, Yang L. Recent progress in experimental and human disease-associated multi-species biofilms. Comput Struct Biotechnol J 2019; 17:1234-1244. [PMID: 31921390 PMCID: PMC6944735 DOI: 10.1016/j.csbj.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Human bodies are colonized by trillions of microorganisms, which are often referred to as human microbiota and play important roles in human health. Next generation sequencing studies have established links between the genetic content of human microbiota and various human diseases. However, it remains largely unknown about the spatial organizations and interspecies interactions of individual species within the human microbiota. Bacterial cells tend to form surface-attached biofilms in many natural environments, which enable intercellular communications and interactions in a microbial ecosystem. In this review, we summarize the recent progresses on the experimental and human disease-associated multi-species biofilm studies. We hypothesize that engineering biofilm structures and interspecies interactions might provide a tool for manipulating the composition and function of human microbiota.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technology University, Singapore
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| |
Collapse
|
35
|
Nogueira F, Sharghi S, Kuchler K, Lion T. Pathogenetic Impact of Bacterial-Fungal Interactions. Microorganisms 2019; 7:microorganisms7100459. [PMID: 31623187 PMCID: PMC6843596 DOI: 10.3390/microorganisms7100459] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial–fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial–fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.
Collapse
Affiliation(s)
- Filomena Nogueira
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Shirin Sharghi
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Karl Kuchler
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Thomas Lion
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
36
|
Alsahhaf A, Al‐Aali KA, Alshagroud RS, Alshiddi IF, Alrahlah A, Abduljabbar T, Javed F, Vohra F. Comparison of yeast species in the subgingival oral biofilm of individuals with type 2 diabetes and peri‐implantitis and individuals with peri‐implantitis without diabetes. J Periodontol 2019; 90:1383-1389. [DOI: 10.1002/jper.19-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Abdulaziz Alsahhaf
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Khulud Abdulrahman Al‐Aali
- Department of Clinical Dental SciencesCollege of DentistryPrincess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Rana Saud Alshagroud
- Department of Oral Medicine and Diagnostic SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ibraheem F. Alshiddi
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ali Alrahlah
- Department of Restorative Dental SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Fawad Javed
- Department of PeriodontologyStony Brook University Stony Brook NY USA
- Laboratory for Periodontal‐, Implant‐, Phototherapy (LA‐PIP)School of Dental MedicineStony Brook University Stony Brook NY USA
| | - Fahim Vohra
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| |
Collapse
|
37
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
38
|
Bunetel L, Tamanai-Shacoori Z, Martin B, Autier B, Guiller A, Bonnaure-Mallet M. Interactions between oral commensal Candida and oral bacterial communities in immunocompromised and healthy children. J Mycol Med 2019; 29:223-232. [PMID: 31235209 DOI: 10.1016/j.mycmed.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023]
Abstract
Candida species are usually found as commensal microorganisms in the oral cavity of healthy people. During chemotherapy, cytostatic drugs lead to depletion of the oral flora with the emergence of a dominant bacterial species. The transition from commensal to pathogenic state, further associated with yeast colonization and oral mucositis implies a replacement of the dominant microorganism by Candida albicans. This process goes plausibly through cooperation between C. albicans and bacteria. This study focused on the first step of cooperation between microorganisms isolated from the same oral flora either of leukemic or healthy children. C. albicans isolated from 8/20 children were cultured to display their noninvasive blastosporic yeast form and mixed with their dominant bacteria to study the capacity of planktonic aggregation and the early state of biofilm formation. None of the dominant bacteria opposed the presence of yeast, on the contrary, an interesting cooperation was observed. This behavior is apparently different from that observed when mixing the type strains. In fact, three mutated C. albicans strains display, by their spontaneous ability to form filament, enhanced risks of virulence for leukemic ill carriers. Despite such risks, neither oral nor systemic pathology were observed in ill patients probably because the study was conducted during the first course of chemotherapy and Candida colonization is related to the number of chemotherapeutic cycles. The presence of C. albicans during the initial cycle represents, by its ability to interact with oral bacteria, an actual threat for further cures.
Collapse
Affiliation(s)
- L Bunetel
- CNRS, ISCR UMR 6226, université Rennes, 35000 Rennes, France.
| | | | - B Martin
- Inserm U 1241, Inra, université Rennes, 35043 Rennes, France
| | - B Autier
- Centre hospitalier universitaire Rennes, 35033 Rennes, France
| | - A Guiller
- CNRS - UPJV Edysan FRE 3498, université Amiens, 80000 Amiens, France
| | - M Bonnaure-Mallet
- Inserm U 1241, Inra, université Rennes, 35043 Rennes, France; Centre hospitalier universitaire Rennes, 35033 Rennes, France
| |
Collapse
|
39
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
40
|
Candida species in intact in vivo biofilm from carious lesions. Arch Oral Biol 2019; 101:142-146. [DOI: 10.1016/j.archoralbio.2019.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 03/23/2019] [Indexed: 11/22/2022]
|
41
|
Alrabiah M, Alshagroud RS, Alsahhaf A, Almojaly SA, Abduljabbar T, Javed F. Presence of Candida species in the subgingival oral biofilm of patients with peri-implantitis. Clin Implant Dent Relat Res 2019; 21:781-785. [PMID: 30908836 DOI: 10.1111/cid.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND There are no studies that have investigated the presence of Candida species in the subgingival oral biofilm (OB) of patients with peri-implantitis. PURPOSE The aim was to assess the presence of Candida species in the subgingival OB of patients with peri-implantitis. MATERIALS AND METHODS Individuals with (group A) and without (group B) peri-implantitis were included. Life style related and demographic data were collected using a questionnaire. In both groups, peri-implant plaque-index (PI), bleeding-on-probing (BOP), and probing-depth (PD) were evaluated and crestal bone loss (CBL) were measured on digital bitewing radiographs. In both groups, subgingival OB samples were collected using sterile paper points. Identification of Candida species was performed using ChromAgar medium and colony forming units per milliliter (CFU/mL) were determined. Statistical analysis was performed, and level of significance was set at P < 0.05. RESULTS The mean age of individuals in groups A (n = 43) and B (n = 41) were 52.2 ± 4.4 and 55.1 ± 2.3 years, respectively. All participants were male. In groups A and B, implants were in function for 7.4 ± 1.3 and 6.8 ± 0.6 years, respectively. Scores of peri-implant PI (P < 0.001), BOP (P < 0.001), PD (P < 0.001), and CBL (P < 0.001) were significantly higher in group A than group B. Subgingival Candida was isolated from the OB of 33 (76.7%) patients in group A and 5 (12.2%) individuals in group B. The most common yeast species was Candida albicans, which was isolated from 67.4% to 60% individuals in groups A and B, respectively. The number of subgingival oral yeasts CFU/mL were significantly higher in group A (3147.54 ± 1052.6 CFU/mL) compared with group B (496.68 ± 100.2 CFU/mL; P < 0.01). CONCLUSION Candida species (predominantly C. albicans) are present in the subgingival OB of patients with peri-implantitis. Community-based efforts toward routine oral hygiene maintenance are needed to improve oral health and minimize the risks of peri-implant diseases in populations.
Collapse
Affiliation(s)
- Mohammed Alrabiah
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rana S Alshagroud
- Department of Oral Medicine and Diagnostic Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsahhaf
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Saud A Almojaly
- Department of Dentistry, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Javed
- Department of Periodontology, Stony Brook University, Stony Brook, New York.,Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
42
|
Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, Bochenska O, Kozik A, Ciaston I, Koziel J, Dutton LC, Nobbs AH, Potempa B, Baster Z, Rajfur Z, Potempa J, Rapala-Kozik M. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep 2019; 9:4376. [PMID: 30867500 PMCID: PMC6416349 DOI: 10.1038/s41598-019-40771-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Michalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lindsay C Dutton
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zbigniew Baster
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
43
|
Bernard C, Lemoine V, Hoogenkamp MA, Girardot M, Krom BP, Imbert C. Candida albicans enhances initial biofilm growth of Cutibacterium acnes under aerobic conditions. BIOFOULING 2019; 35:350-360. [PMID: 31088179 DOI: 10.1080/08927014.2019.1608966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.
Collapse
Affiliation(s)
- Clément Bernard
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Virginie Lemoine
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Michel A Hoogenkamp
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
| | - Marion Girardot
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Bastiaan P Krom
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
- c ESCMID Study Group for Biofilms (ESGB)
| | - Christine Imbert
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
- c ESCMID Study Group for Biofilms (ESGB)
| |
Collapse
|
44
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
45
|
Pérez-Delgado O, Vallejos-Campos EC. Actividad antifúngica in vitrodel extracto crudo acuoso de Rosmarinas officinaliscontra Candida albicans. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2019. [DOI: 10.36610/j.jsars.2019.100100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
47
|
Xiao J, Grier A, Faustoferri RC, Alzoubi S, Gill AL, Feng C, Liu Y, Quivey RG, Kopycka-Kedzierawski DT, Koo H, Gill SR. Association between Oral Candida and Bacteriome in Children with Severe ECC. J Dent Res 2018; 97:1468-1476. [PMID: 30049240 DOI: 10.1177/0022034518790941] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is an opportunistic fungal organism frequently detected in the oral cavity of children with severe early childhood caries (S-ECC). Previous studies suggested the cariogenic potential of C. albicans, in vitro and in vivo, and further demonstrated its synergistic interactions with Streptococcus mutans. In combination, the 2 organisms are associated with higher caries severity in a rodent model. However, it remains unknown whether C. albicans influences the composition and diversity of the entire oral bacterial community to promote S-ECC onset. With 16s rRNA amplicon sequencing, this study analyzed the microbiota of saliva and supragingival plaque from 39 children (21 S-ECC and 18 caries-free [CF]) and 33 mothers (17 S-ECC and 16 CF). The results revealed that the presence of oral C. albicans is associated with a highly acidogenic and acid-tolerant bacterial community in S-ECC, with an increased abundance of plaque Streptococcus (particularly S. mutans) and certain Lactobacillus/Scardovia species and salivary/plaque Veillonella and Prevotella, as well as decreased levels of salivary/plaque Actinomyces. Concurrent with this microbial community assembly, the activity of glucosyltransferases (cariogenic virulence factors secreted by S. mutans) in plaque was significantly elevated when C. albicans was present. Moreover, the oral microbial community composition and diversity differed significantly by disease group (CF vs. S-ECC) and sample source (saliva vs. plaque). Children and mothers within the CF and S-ECC groups shared microbiota composition and diversity, suggesting a strong maternal influence on children's oral microbiota. Altogether, this study underscores the importance of C. albicans in association with the oral bacteriome in the context of S-ECC etiopathogenesis. Further longitudinal studies are warranted to examine how fungal-bacterial interactions modulate the onset and severity of S-ECC, potentially leading to novel anticaries treatments that address fungal contributions.
Collapse
Affiliation(s)
- J Xiao
- 1 Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - A Grier
- 2 Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - R C Faustoferri
- 1 Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - S Alzoubi
- 1 Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - A L Gill
- 3 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - C Feng
- 4 Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Y Liu
- 5 Divisions of Pediatric Dentistry and Community Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R G Quivey
- 1 Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.,2 Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | | | - H Koo
- 5 Divisions of Pediatric Dentistry and Community Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S R Gill
- 2 Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA.,3 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
48
|
Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O, Ciaston I, Koziel J, Potempa J, Baster Z, Rajfur Z, Rapala-Kozik M. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathog Dis 2018; 76:4969680. [PMID: 29668945 PMCID: PMC6251568 DOI: 10.1093/femspd/fty033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic Gram-negative bacterium critically involved in the development of human periodontitis, belongs to the late colonizers of the oral cavity. The success of this pathogen in the host colonization and infection results from the presence of several virulence factors, including extracellular peptidylarginine deiminase (PPAD), an enzyme that converts protein arginine residues to citrullines. A common opportunistic fungal pathogen of humans, Candida albicans, is also frequently identified among microorganisms that reside at subgingival sites. The aim of the current work was to verify if protein citrullination can influence the formation of mixed biofilms by both microorganisms under hypoxic and normoxic conditions. Quantitative estimations of the bacterial adhesion to fungal cells demonstrated the importance of PPAD activity in this process, since the level of binding of P. gingivalis mutant strain deprived of PPAD was significantly lower than that observed for the wild-type strain. These results were consistent with mass spectrometric detection of the citrullination of selected surface-exposed C. albicans proteins. Furthermore, a viability of P. gingivalis cells under normoxia increased in the presence of fungal biofilm compared with the bacteria that formed single-species biofilm. These findings suggest a possible protection of these strict anaerobes under unfavorable aerobic conditions by C. albicans during mixed biofilm formation.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Kieronska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
49
|
Insights into the human oral microbiome. Arch Microbiol 2018; 200:525-540. [PMID: 29572583 DOI: 10.1007/s00203-018-1505-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
Human oral cavity harbors the second most abundant microbiota after the gastrointestinal tract. The expanded Human Oral Microbiome Database (eHOMD) that was last updated on November 22, 2017, contains the information of approximately 772 prokaryotic species, where 70% is cultivable, and 30% belong to the uncultivable class of microorganisms along with whole genome sequences of 482 taxa. Out of 70% culturable species, 57% have already been assigned to their names. The 16S rDNA profiling of the healthy oral cavity categorized the inhabitant bacteria into six broad phyla, viz. Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, Bacteroidetes and Spirochaetes constituting 96% of total oral bacteria. These hidden oral micro-inhabitants exhibit a direct influence on human health, from host's metabolism to immune responses. Altered oral microflora has been observed in several diseases such as diabetes, bacteremia, endocarditis, cancer, autoimmune disease and preterm births. Therefore, it becomes crucial to understand the oral microbial diversity and how it fluctuates under diseased/perturbed conditions. Advances in metagenomics and next-generation sequencing techniques generate rapid sequences and provide extensive information of inhabitant microorganisms of a niche. Thus, the retrieved information can be utilized for developing microbiome-based biomarkers for their use in early diagnosis of oral and associated diseases. Besides, several apex companies have shown keen interest in oral microbiome for its diagnostic and therapeutic potential indicating a vast market opportunity. This review gives an insight of various associated aspects of the human oral microbiome.
Collapse
|
50
|
Ridwan RD, Sidarningsih, Kusumaningsih T, Salim S. Effect of lipopolysaccharide derived from surabaya isolates of Actinobacillus actinomycetemcomitans on alveolar bone destruction. Vet World 2018; 11:161-166. [PMID: 29657397 PMCID: PMC5891868 DOI: 10.14202/vetworld.2018.161-166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Actinobacillus actinomycetemcomitans’ lipopolysaccharide (LPS) has a high virulence factor. It interacts with serum protein through receptors on the epithelial cell surface, thereby increasing both interleukin (IL)-1β, and IL-6 which results in damage to periodontal tissue. Aim: The aim of the study was to identify and evaluate the effect of LPS derived from local isolates (A. actinomycetemcomitans) on the destruction of alveolar bone by means of several biomarkers, including; the number of osteoblasts and osteoclasts, the expression of IL-6, matrix metallopeptidase 1 (MMP-1), and receptor activator of nuclear factor kappa-Β ligand (RANKL). Materials and Methods: The isolation of LPS from A. actinomycetemcomitans was calculated using phenol, while purification was performed using Sephadex C-18 column chromatography. 40 Wistar rats were divided into four groups of 10. Each treatment was divided into two groups which were 0.9% NaCl and LPS induced for 7 and 14 days, respectively. Gingival and alveolar bones were further introduced into the induction area, followed by the measuring of osteoblast and osteoclast with hematoxylin-eosin staining, IL-6, MMP-1 and RANKL expression with immunohistochemical. Results: Reduced numbers of osteoblasts at the 7th and 14th day of treatment were detected, while those of osteoclasts increased. There was an increased expression of IL-6, MMP-1, and RANKL in the 7th and 14th-day treatment group. Treatment of LPS from A. actinomycetemcomitans over 7 and 14 days resulted in damage to periodontal tissue and alveolar bone in Wistar rats. Conclusion: LPS of A. actinomycetemcomitans administration for 7 and 14 days causes periodontal and alveolar tissue destruction in Wistar rats.
Collapse
Affiliation(s)
- Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sidarningsih
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tuti Kusumaningsih
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sherman Salim
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|