1
|
Hongo H, Miyawaki S, Teranishi Y, Mitsui J, Katoh H, Komura D, Tsubota K, Matsukawa T, Watanabe M, Kurita M, Yoshimura J, Dofuku S, Ohara K, Ishigami D, Okano A, Kato M, Hakuno F, Takahashi A, Kunita A, Ishiura H, Shin M, Nakatomi H, Nagao T, Goto H, Takahashi SI, Ushiku T, Ishikawa S, Okazaki M, Morishita S, Tsuji S, Saito N. Somatic GJA4 gain-of-function mutation in orbital cavernous venous malformations. Angiogenesis 2023; 26:37-52. [PMID: 35902510 PMCID: PMC9908695 DOI: 10.1007/s10456-022-09846-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.
Collapse
Affiliation(s)
- Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masakazu Kurita
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoi Kato
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Abstract
Vascular malformations are defects caused by the abnormal growth of the vasculature. Among them, venous malformation (VM) is an anomaly characterized by slow-flow vascular lesions with abnormally shaped veins, typically in sponge-like configuration. VMs can expand over years causing disfigurement, obstruction of vital structures, thrombosis, bleeding, and pain. Treatments have been very limited and primarily based on supportive care, compression garments, sclerotherapy, and/or surgical resection. Sirolimus treatment has recently shown efficacy in some patients with complicated vascular anomalies, including VMs. Activating somatic TIE2 gene mutations have been identified in up to 60% of VMs and PIK3CA mutations have been found in another 25%. Here, we report a xenograft model of VM that reflects the patients' mutation heterogeneity. First, we established a protocol to isolate and expand in culture endothelial cells (VM-EC) from VM tissue or VM blood of nine patients. In these cells, we identified somatic mutations of TIE2, PIK3CA, or a combination of both. Both TIE2 and PIK3CA mutations induced constitutive AKT activation, while TIE2 mutations also showed high MAPK-ERK signaling. Finally, VM-EC implanted into immune-deficient mice generated lesions with ectatic blood-filled channels with scarce smooth muscle cell coverage, similar to patients' VM. This VM xenograft model could be instrumental to test the therapeutic efficacy of Sirolimus in the presence of the different TIE2 or PIK3CA mutations or to test for efficacy of additional compounds in targeting the specific mutated protein(s), thus enabling development of personalized treatment options for VM patients.
Collapse
|
3
|
Tan EMS, Siljee SD, Brasch HD, Enriquez S, Tan ST, Itinteang T. Embryonic Stem Cell-Like Subpopulations in Venous Malformation. Front Med (Lausanne) 2017; 4:162. [PMID: 29046873 PMCID: PMC5632722 DOI: 10.3389/fmed.2017.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/15/2017] [Indexed: 01/16/2023] Open
Abstract
Background Venous malformation (VM) consists of a network of ectatic anomalous thin-walled venous channels. A role for an activating TIE2 mutation in the development of the dilated luminal vessels in VM, and its proposed involvement of embryonic stem cells (ESCs), led us to investigate the expression of ESC markers in subcutaneous VM (SCVM) and intramuscular VM (IMVM). Methods Formalin-fixed paraffin-embedded sections of SCVM from seven patients and IMVM samples from seven patients were analyzed for the expression of Nanog, pSTAT3, OCT4, SOX2, SALL4, and CD44, using 3,3′-diaminobenzidine (DAB) immunohistochemical (IHC) staining. All these samples did not express lymphatic marker D2-40. NanoString mRNA analysis and RT-PCR were performed on snap-frozen samples of SCVM (n = 3) and IMVM (n = 3) from the respective original cohorts of patients included in DAB IHC staining. To confirm co-expression of two proteins, immunofluorescent (IF) IHC staining on two representative samples of IMVM and SCVM samples from the original cohorts of patients included for DAB IHC staining was performed. Results DAB IHC staining demonstrated expression of all of the above ESC markers in both SCVM and IMVM samples. IF IHC staining showed that these markers were localized to the endothelium within these lesions and that Nanog, pSTAT3, SOX2, and CD44 were also expressed by cells outside of the endothelium. NanoString mRNA analysis confirmed transcription activation of pSTAT3, OCT4, and CD44. RT-qPCR confirmed transcription activation of Nanog, SOX2, and SALL4. Conclusion Our findings support the presence of two ESC-like subpopulations, one within and one outside of the endothelium, of both SCVM and IMVM. Given that the endothelial ESC-like subpopulation expresses the more primitive marker, OCT4, it is exciting to speculate that they give rise to the non-endothelial subpopulation.
Collapse
Affiliation(s)
- Elysia M S Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|