1
|
Pichetpan K, Singsuwan P, Mahakkanukrauh P. Age estimation using medial clavicle by histomorphometry method with artificial intelligence: A review. MEDICINE, SCIENCE, AND THE LAW 2024; 64:329-342. [PMID: 39109626 DOI: 10.1177/00258024241270779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This review research critically assesses the evolving landscape of age estimation methodologies, with a particular focus on the innovative integration of histomorphometry and artificial intelligence (AI) in the analysis of the medial clavicle. The medial clavicle emerges as a crucial skeletal feature for predicting age, offering valuable insights into the morphological changes occurring throughout an individual's lifespan. Through an in-depth exploration of histological complexities, including variations in osteons, trabecular structures, and cortical thickness, this review elucidates their utility as viable indicators for age-related evaluations. This framework is augmented by the incorporation of AI technology, which enables automatic picture identification, feature extraction, and complicated pattern analysis. Our review of previous research highlights the promise of AI in improving prediction models for nuanced age estimates, highlighting the importance of large-scale, diversified datasets and thorough cross-validation. This thorough study, which addresses ethical concerns as well as the influence of population-specific characteristics, moves the debate around age estimate ahead, presenting insights with consequences for forensic anthropology, clinical diagnoses, and future research avenues.
Collapse
Affiliation(s)
- Kewalee Pichetpan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phruksachat Singsuwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Hande SS, Andronowski JM, Miller EH. Microarchitecture of the penis bone (baculum) of a seal: A 3D morphometric examination using synchrotron and laboratory micro-computed tomography. Anat Rec (Hoboken) 2024; 307:2858-2874. [PMID: 38311971 DOI: 10.1002/ar.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
We examined the ultrastructure of the mammalian os penis at the high-resolution synchrotron level. Previously, bacular microanatomy had only been investigated histologically. We studied the baculum of the harp seal (Pagophilus groenlandicus), in which the baculum varies more in size and shape than does a mechanically constrained bone (humerus). We (1) investigated the microarchitecture of bacula and humeri from the same seal specimens, and (2) described changes in bone micro- and macro-morphology associated with age (n = 15, age range = 1-35 years) and bone type. We analyzed cross-sectional geometry non-destructively through laboratory micro-computed tomography. We suggest that the midshaft may resist axial compression while the proximal region may resist torsion, based on measurements of cross-sectional and cortical areas, perimeter, ratio of maximum and minimum moments of inertia, and polar moment of inertia. In addition, midshaft bacula may be less mechanosensitive than humeri, based on microstructural variables (e.g., volume, surface area, diameter associated with lacunae and cortical porosity) analyzed across age groupings. Our findings related to the microarchitecture of the pinniped baculum provide a basis for further studies on development, mechanical properties, functions, and adaptations in this and other pinniped species. Our use of a multi-modal imaging approach was minimally destructive for reproducible and accurate comparison of three-dimensional bone ultrastructure. Such methods, coupled with multidisciplinary analyses, enable diverse studies of bone biology, life history, and evolution using museum collections.
Collapse
Affiliation(s)
- Shreya S Hande
- Department of Biology, Memorial University of Newfoundland, Canada
| | - Janna M Andronowski
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| | - Edward H Miller
- Department of Biology, Memorial University of Newfoundland, Canada
| |
Collapse
|
3
|
Stan E, Muresan CO, Daescu E, Dumache R, Ciocan V, Ungureanu S, Costachescu D, Enache A. A Review of Histological Techniques for Differentiating Human Bone from Animal Bone. Methods Protoc 2024; 7:51. [PMID: 39051265 PMCID: PMC11270420 DOI: 10.3390/mps7040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
The first step in anthropological study is the positive identification of human remains, which can be a challenging undertaking when bones are broken. When bone pieces from different species are mixed together, it can be crucial to distinguish between them in forensic and archaeological contexts. For years, anthropology and archaeology have employed the histomorphological analysis of bones to evaluate species-specific variations. Based on variations in the dimensions and configuration of Haversian systems between the two groups, these techniques have been devised to distinguish between non-human and human bones. All of those techniques concentrate on a very particular kind of bone, zone, and segment. Histomorphometric techniques make the assumption that there are size, form, and quantity variations between non-humans and humans. The structural components of Haversian bones are significant enough to use discriminant function analysis to separate one from the other. This review proposes a comprehensive literature analysis of the various strategies or techniques available for distinguishing human from non-human bones to demonstrate that histomorphological analysis is the most effective method to be used in the case of inadequate or compromised samples.
Collapse
Affiliation(s)
- Emanuela Stan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
| | - Camelia-Oana Muresan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ecaterina Daescu
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Department I of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Veronica Ciocan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stefania Ungureanu
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
| | - Dan Costachescu
- Radiology Laboratory, Emergency Municipal Clinical Hospital Timisoara, 300254 Timisoara, Romania;
- Department of Orthopedics-Traumatology, Urology, Radiology and Medical Imaging, Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandra Enache
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Gumpangseth T, Mahakkanukrauh P. Age estimation in the combined long bones and ribs by histomorphometry: Past, present, and future. MEDICINE, SCIENCE, AND THE LAW 2024; 64:52-71. [PMID: 37876174 DOI: 10.1177/00258024231208280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Numerous age estimation methods in unidentified bone have been a long time developing for application in forensic anthropology. The histomorphometric technique is one of the alternative methods that relied upon the evaluation of the cortical bone microstructure over the lifespan as a result of the remodeling process in bone. Remodeling is a sophisticated event occurring from the coupled function of bone formation and resorption cells for maintaining mineral homeostasis and repairment of microdamage in bone tissue. Products derived from remodeling are primary changes in the osteon or haversian system in various regions in the cortical bone, including periosteum, endosteum, and trabecular bone. Throughout life, bone remodeling rate with osteon alteration can be predictable. In the forensic field, histological methods are getting more attention due to the unavailability of macroscopic methods. Histomorphometry approach can be accomplished in fragmentary or incomplete bone remains indicating the limited use of gross morphological methods. In addition, the microscopic methods can aid to increase the more accuracy of analyses and diminish the biased subjective assessment for determining age. Most histomorphometry method utilizes a cross-section of the midshaft of the long bones including the mandible, rib, and clavicle. This review provides the basic knowledge of bone biology and anatomy, several age-estimating methods of histology, and crucial factors for age methods. Studies regarding overall age determination methods from the past until now contribute to obtaining more benefits for developing methods of histomorphometry using human bone in forensic identification.
Collapse
Affiliation(s)
- Treerat Gumpangseth
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Wei X, Cooper DML. The various meanings and uses of bone "remodeling" in biological anthropology: A review. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:318-329. [PMID: 37515465 DOI: 10.1002/ajpa.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES In modern bone biology, the term "remodeling" generally refers to internal bone turnover that creates secondary osteons. However, it is also widely used by skeletal biologists, including biological anthropologists as a catch-all term to refer to different skeletal changes. In this review, we investigated how "remodeling" is used across topics on skeletal biology in biological anthropology to demonstrate potential problems with such pervasive use of a generalized term. METHODS Using PubMed and Google Scholar, we selected and reviewed 205 articles that use the term remodeling to describe skeletal processes and have anthropological implications. Nine edited volumes were also reviewed as examples of collaborative work by different experts to demonstrate the diverse and extensive use of the term remodeling. RESULTS Four general meanings of bone "remodeling" were identified, namely, internal turnover, functional adaptation, fracture repair, and growth remodeling. Additionally, remodeling is also used to refer to a broad array of pathological skeletal changes. DISCUSSION Although we initially identified four general meanings of bone remodeling, they are not mutually exclusive and often occur in combination. The term "remodeling" has become an extensively used catch-all term to refer to different processes and outcomes of skeletal changes, which inevitably lead to misunderstanding and a loss of information. Such ambiguity and confusion are potentially problematic as the field of biological anthropology becomes increasingly multidisciplinary. Therefore, we advocate for precise, context-specific definitions and explanations of bone remodeling as it continues to be used across disciplines within and beyond biological anthropology.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David M L Cooper
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Littek A, McKenna SJ, Chiam WX, Kranioti EF, Trucco E, García-Donas JG. Automatic Segmentation of Osteonal Microstructure in Human Cortical Bone Using Deep Learning: A Proof of Concept. BIOLOGY 2023; 12:biology12040619. [PMID: 37106819 PMCID: PMC10135806 DOI: 10.3390/biology12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Cortical bone microstructure assessment in biological and forensic anthropology can assist with the estimation of age-at-death and animal-human differentiation, for example. Osteonal structures within cortical bone are the key feature under analysis, with osteon frequency and metric parameters providing crucial information for the assessment. Currently, the histomorphological assessment consists of a time-consuming manual process for which specific training is required. Our work investigates the feasibility of automatic analysis of human bone microstructure images through the application of deep learning. In this paper, we use a U-Net architecture to address the semantic segmentation of such images into three classes: intact osteons, fragmentary osteons, and background. Data augmentation was used to avoid overfitting. We evaluated our fully automatic approach using a sample of 99 microphotographs. The contours of intact and fragmentary osteons were traced manually to provide ground truth. The Dice coefficients were 0.73 for intact osteons, 0.38 for fragmented osteons, and 0.81 for background, giving an average of 0.64. The Dice coefficient of the binary classification osteon-background was 0.82. Although further refinement of the initial model and tests with larger datasets are needed, this study provides, to the best of our knowledge, the first proof of concept for the use of computer vision and deep learning for differentiating both intact and fragmentary osteons in human cortical bone. This approach has the potential to widen and facilitate the use of histomorphological assessment in the biological and forensic anthropology communities.
Collapse
Affiliation(s)
- Alina Littek
- Computer Vision and Image Processing Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Stephen J McKenna
- Computer Vision and Image Processing Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Wei Xiong Chiam
- Computer Vision and Image Processing Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Elena F Kranioti
- Forensic Medicine Unit, Department of Forensic Sciences, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Emanuele Trucco
- Computer Vision and Image Processing Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Julieta G García-Donas
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
7
|
Andronowski JM, Cole ME, Davis RA, Tubo GR, Taylor JT, Cooper DML. A multimodal 3D imaging approach of pore networks in the human femur to assess age-associated vascular expansion and Lacuno-Canalicular reduction. Anat Rec (Hoboken) 2023; 306:475-493. [PMID: 36153809 DOI: 10.1002/ar.25089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Cellular communication in the mechanosensory osteocyte Lacuno-Canalicular Network (LCN) regulates bone tissue remodeling throughout life. Age-associated declines in LCN size and connectivity dysregulate mechanosensitivity to localized remodeling needs of aging or damaged tissue, compromising bone quality. Synchrotron radiation-based micro-Computed Tomography (SRμCT) and Confocal Laser Scanning Microscopy (CLSM) were employed to visualize LCN and vascular canal morphometry in an age series of the anterior femur (males n = 14, females n = 11, age range = 19-101, mean age = 55). Age-associated increases in vascular porosity were driven by pore coalescence, including a significant expansion in pore diameter and a significant decline in pore density. In contrast, the LCN showed significant age-associated reductions in lacunar volume fraction, mean diameter, and density, and in canalicular volume fraction and connectivity density. Lacunar density was significantly lower in females across the lifespan, exacerbating their age-associated decline. Canalicular connectivity density was also significantly lower in females but approached comparable declining male values in older age. Our data illuminate the trajectory and potential morphometric sources of age-associated bone loss. Increased vascular porosity contributes to bone fragility with aging, while an increasingly reduced and disconnected LCN undermines the mechanosensitivity required to repair and reinforce bone. Understanding why and how this degradation occurs is essential for improving the diagnosis and treatment of age-related changes in bone quality and fragility.
Collapse
Affiliation(s)
- Janna M Andronowski
- Faculty of Medicine, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mary E Cole
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Reed A Davis
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Gina R Tubo
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Joshua T Taylor
- Faculty of Medicine, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - David M L Cooper
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Pasini A, Rinaldo N, Bramanti B, Gualdi-Russo E. Technical note: Application and potentiality of quantitative ultrasonometry for the evaluation of bone mineral density status. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:140-154. [PMID: 36824053 DOI: 10.1002/ajpa.24711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
The evaluation of bone mineral density (BMD) is an important task in paleopathology. Techniques commonly applied in bone quantity assessment, such as DXA or radiogrammetry (XR), suffer from several limitations when applied to skeletal remains. In recently published research, we developed a new methodology and new reference curves for the evaluation of BMD on human skeletal remains, applying for the first time Quantitative Ultrasonometry (QUS), a user-friendly, portable, and reliable clinical technique. This study aims to apply this new methodology to an archeological sample and to compare the results with those obtained through XR. We apply QUS and XR to a sample of 104 adults from Medieval Italian cemeteries. Fragility fractures were recorded. Descriptive statistics and comparisons between sexes, age-at-death cohorts, and individuals with and without fragility fractures were performed. Moreover, univariate and multivariate logistic regression models were used to define the parameters most predictive of fracture risk in past populations. The comparison between sexes showed no significant results concerning BMD parameters, whereas a decrease in BMD with increasing age is confirmed. The comparison between fracture and non-fracture individuals and the logit model demonstrated that QUS parameters, especially UBPI, are more reliable predictors of fracture risk in comparison to XR. Our results confirmed that QUS is a valuable technique that can be efficiently applied to archeological remains, also considering its portability. We also propose a modification of the previously published QUS standard curves, to easily assess osteopenia and osteoporosis in archeological material.
Collapse
Affiliation(s)
- Alba Pasini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Natascia Rinaldo
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Barbara Bramanti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Emanuela Gualdi-Russo
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Bone Molecular Modifications Induced by Diagenesis Followed-Up for 12 Months. BIOLOGY 2022; 11:biology11101542. [PMID: 36290445 PMCID: PMC9598178 DOI: 10.3390/biology11101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
After death, diagenesis takes place. Numerous processes occur concomitantly, which makes it difficult to identify the diagenetic processes. The diagenetic processes refer to all processes (chemical or physical) that modify the skeletal remains. These processes are highly variable depending on the environmental factors (weather, temperature, age, sex, etc.), especially in the early stages. Numerous studies have evaluated bone diagenetic processes over long timescales (~millions of years), but fewer have been done over short timescales (between days and thousands of years). The objective of the study is to assess the early stages of diagenetic processes by Raman microspectroscopy over 12 months. The mineral and organic matrix modifications are monitored through physicochemical parameters. Ribs from six humans were buried in soil. The modifications of bone composition were followed by Raman spectroscopy each month. The decrease in the mineral/organic ratio and carbonate type-B content and the increase in crystallinity reveal that minerals undergo dissolution-recrystallization. The decrease in collagen cross-linking indicates that collagen hydrolysis induces the fragmentation of collagen fibres over 12 months.
Collapse
|
10
|
Tabassum A, Chainchel Singh MK, Ibrahim N, Ramanarayanan S, Mohd Yusof MYP. Quantifications of Mandibular Trabecular Bone Microstructure Using Cone Beam Computed Tomography for Age Estimation: A Preliminary Study. BIOLOGY 2022; 11:1521. [PMID: 36290424 PMCID: PMC9598395 DOI: 10.3390/biology11101521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
The aim of this study is two-fold: first, to correlate the values for each of the trabecular bone microstructure (TBM) parameters to the individual’s chronological age and sex, thereby facilitating the assessment of potential age and sex-related changes in trabecular bone microstructure parameters in the mandible; and second, to quantify the trabecular microstructural parameters in relation to chronological age. Twenty cone-beam computed tomographic (CBCT) scans were retrieved retrospectively from a database of adult patients with ages ranging in age from 22 to 43 years. In the mandible, the volume of interest included the inter-dental space between the second mandibular premolar and the first mandibular molar, as well as the trabecular space beneath and between the apices. Using the AnalyzeDirect 14.0 software, the DICOM images of CBCT scans were pre-processed, transformed, segmented using a novel semi-automatic threshold-guided method, and quantified. In addition, TBM parameters were derived, and statistical analysis was conducted using a Pearson correlation test with two tails. All parameters exhibited no statistically significant differences (p > 0.05) between chronological age and sex. Statistically significant negative correlations were found between Tb. N (r = −0.489), BS/TV (r = −0.527), and chronological age (p = 0.029 and p = 0.017, respectively). Only Tb. N and BS/TV exhibited an inverse relationship with chronological age. Numerous studies have quantified the trabecular architecture of the jaw bones, but none have found a correlation between the quantified trabecular parameters and chronological age. The digital imprints produced by radiographic imaging can serve as biological profiles for data collection.
Collapse
Affiliation(s)
- Arshiya Tabassum
- Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Mansharan Kaur Chainchel Singh
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Norliza Ibrahim
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Federal Territory of Kuala Lumpur, Malaysia
| | - Subramaniam Ramanarayanan
- Department of Public Health Dentistry, Indira Gandhi Institute of Dental Sciences, Nellikuzhi P.O., Kothamangalam, Kerala 686691, India
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Forensic Odontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Jawa Timur 60132, Indonesia
| |
Collapse
|
11
|
Wan JT, Sheeley DM, Somerman MJ, Lee JS. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res 2020; 8:14. [PMID: 32195012 PMCID: PMC7064532 DOI: 10.1038/s41413-020-0088-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that alterations in phosphate metabolism have a profound effect on hard and soft tissues of the oral cavity. The present-day clinical form of osteonecrosis of the jaw (ONJ) was preceded by phosphorus necrosis of the jaw, ca. 1860. The subsequent removal of yellow phosphorus from matches in the early 20th century saw a parallel decline in "phossy jaw" until the early 2000s, when similar reports of unusual jaw bone necrosis began to appear in the literature describing jaw necrosis in patients undergoing chemotherapy and concomitant steroid and bisphosphonate treatment. Today, the potential side effect of ONJ associated with medications that block osteoclast activity (antiresorptive) is well known, though the mechanism remains unclear and the management and outcomes are often unsatisfactory. Much of the existing literature has focused on the continuing concerns of appropriate use of bisphosphonates and other antiresorptive medications, the incomplete or underdeveloped research on ONJ, and the use of drugs with anabolic potential for treatment of osteoporosis. While recognizing that ONJ is a rare occurrence and ONJ-associated medications play an important role in fracture risk reduction in osteoporotic patients, evidence to date suggests that health care providers can lower the risk further by dental evaluations and care prior to initiating antiresorptive therapies and by monitoring dental health during and after treatment. This review describes the current clinical management guidelines for ONJ, the critical role of dental-medical management in mitigating risks, and the current understanding of the effects of predominantly osteoclast-modulating drugs on bone homeostasis.
Collapse
Affiliation(s)
- Jason T. Wan
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Douglas M. Sheeley
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Martha J. Somerman
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
- Laboratory for Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | - Janice S. Lee
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|