1
|
Salazar C, Ojeda N, Mercado L. Dysregulated proinflammatory cytokines and immune-related miRNAs in ASK cells exposed to 17⍺-Ethynyl estradiol and 4-nonylphenol. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105282. [PMID: 39437900 DOI: 10.1016/j.dci.2024.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Endocrine Disruptor Compounds (EDCs) in the aquatic environment have acquired pronounced relevance due to their toxic effect on the aquatic flora and fauna. Xenoestrogens are EDCs that possess estrogenic activity and, thus, disrupt normal estrogen signaling, affecting different functions, such as immune system processes. Two relevant xenoestrogens discarded into fresh and seawater are 4-nonylphenol (NP) and 17⍺-Ethynyl Estradiol (EE2). Considering that the piscicultures of Salmo salar can be located at sites of potential exposure to xenoestrogen-containing effluxes, it is crucial to understand the effect of xenoestrogens on the immune response and its possible molecular mechanism in this species. Our studies reveal an increase in the expression of the receptor era and erb at early times of exposure, a disrupted expression of pro-inflammatory cytokines (il1b and tnfa), an upregulation of ssa-miR-146a-5p, ssa-miR-125 b-5p, and downregulation of ssa-miR-145-5p in ASK cells exposed to estrogen and xenoestrogen, could potentially lead to new strategies for mitigating the effects of xenoestrogens on Salmo salar immune response.
Collapse
Affiliation(s)
- Carolina Salazar
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Hu CB, Huang C, Wang J, Hong Y, Fan DD, Chen Y, Lin AF, Xiang LX, Shao JZ. PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell-Initiated Adaptive Immunity in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:816-835. [PMID: 37486225 DOI: 10.4049/jimmunol.2300217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.
Collapse
Affiliation(s)
- Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Wang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Hong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ye Chen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Zhang Z, Guan X, Sun L. A novel teleost microRNA regulates autophagy and NF-κB activation during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108778. [PMID: 37130474 DOI: 10.1016/j.fsi.2023.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/21/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs with regulatory functions in many cellular processes, including immune defense. In this study, we identified novel-m0089-3p, a novel miRNA with unknown function, in the teleost fish Japanese flounder (Paralichthys olivaceus) and investigated its immune function. Novel-m0089-3p was found to target the autophagy-associated gene ATG7 and negatively regulate ATG7 expression via interaction with the 3' UTR of ATG7. During the infection of the bacterial pathogen Edwardsiella tarda, novel-m0089-3p expression was induced in flounder, which in turn repressed ATG7 expression. Overexpression of novel-m0089-3p or blocking ATG7 expression inhibited autophagy and promoted the intracellular replication of E. tarda. Novel-m0089-3p overexpression, as well as E. tarda infection, activated NF-κB and stimulated the expression of inflammatory cytokines. Together these results revealed an important role of novel-m0089-3p in response to bacterial infection.
Collapse
Affiliation(s)
- Zhanwei Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaolu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Ma H, Chen Y, Yu M, Chen X, Qi L, Wei S, Fan Q, Xu Q, Zhan M, Sha Z. Immune role of the complement component 6 gene and its associated novel miRNA, miR-727, in half-smooth tongue sole (Cynoglossus semilaevis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104156. [PMID: 34077766 DOI: 10.1016/j.dci.2021.104156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The complement component 6 (C6) gene is a component of the membrane attack complex (MAC), which causes rapid lytic destruction of bacteria. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene stability, including that of immune genes. However, current research on the function of C6 and its regulation by miRNAs is lacking. In the present study, we identified and characterized C6 and a novel miRNA, miR-727 (designated CsC6 and Cse-miR-727, respectively), of the half-smooth tongue sole (Cynoglossus semilaevis) that responded to infection with Vibrio anguillarum, a Gram-negative pathogen of marine fish. The full-length cDNA of CsC6 contained a 256 bp 5' untranslated region (5'-UTR), a 2820 bp open reading frame (ORF) encoding 939 amino acids, and a 205 bp 3'-UTR. SMART analysis showed that CsC6 contains typical C6 domains, including three TSP1 domains, one LDLa domain, one MACPF domain, two CCP domains and two FIMAC domains. CsC6 and Cse-miR-727 are widely expressed in the 13 tissues of half-smooth tongue sole, and their expression in immune tissues is significantly changed after V. anguillarum infection, generally showing an inverse trend. We confirmed that CsC6 was the target gene of Cse-miR-727 using the dual luciferase reporter assay and that Cse-miR-727 regulated CsC6 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The hepatic expression levels of not only the MAC components C7, C8α, C8β, C8γ and C9 but also the MAPKs, NF-κβ, AP-1, IL1β, IL6 and TNFα, which are involved in many signaling pathways, changed significantly in half-smooth tongue sole following stimulation with the Cse-miR-727 agomir and inhibitor. This evidence suggested that CsC6 could be mediated by Cse-miR-727 to affect MAC assembly and immune signaling pathways in half-smooth tongue soles. To our best knowledge, this study is the first to investigate the regulatory mechanism and immune response of complement genes mediated by miRNAs in fish.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Mengjun Yu
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Longjiang Qi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Shu Wei
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qingxin Fan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Min Zhan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Li W, Guan X, Sun B, Sun L. A Novel microRNA of Japanese Flounder Regulates Antimicrobial Immunity Involving a Bacteria-Binding CSF3. Front Immunol 2021; 12:723401. [PMID: 34489973 PMCID: PMC8417112 DOI: 10.3389/fimmu.2021.723401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes including immunity. In a previous high-throughput RNA sequencing study, a novel miRNA, pol-miR-novel_642, was identified from Japanese flounder (Paralichthys olivaceus), a farmed fish species with important economic value. In this study, we investigated the regulatory mechanism and the function of pol-miR-novel_642 and its target gene. We found that pol-miR-novel_642 targeted, in a sequence-specific manner, a flounder gene encoding an uncharacterized protein that is a structural homologue of murine granulocyte colony stimulating factor 3 (CSF3). The expression of pol-miR-novel_642 and its target gene (named PoCSF3-1) was regulated, in different manners, by the bacterial pathogen Edwardsiella tarda and the viral pathogen megalocytivirus. Overexpression of pol-miR-novel_642 or interference with PoCSF3-1 expression in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoCSF3-1 enhanced bacterial dissemination in flounder tissues but blocked viral replication, whereas in vivo overexpression of PoCSF3-1 inhibited bacterial dissemination and facilitated viral infection. Overexpression/knockdown of PoCSF3-1 and pol-miR-novel_642 also affected the activation of autophagy. Recombinant PoCSF3-1 (rPoCSF3-1) interacted with and inhibited the growth of Gram-negative bacteria in a manner relying on a PoCSF3-1-characteristic structural motif that is absent in mouse CSF3. rPoCSF3-1 also regulated the proliferation, inflammatory response, and immune defense of flounder head kidney leukocytes in a structure-dependent fashion. Together, these results reveal the function of a novel miRNA-CSF3 regulatory system of flounder, and add new insights into the role and mechanism of fish miRNA and CSF3 in antimicrobial immunity.
Collapse
Affiliation(s)
- Wenrui Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Bin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Dong W, Gao W, Yan X, Sun Y, Xu T. microRNA-132 as a negative regulator in NF-κB signaling pathway via targeting IL-1β in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104113. [PMID: 33979576 DOI: 10.1016/j.dci.2021.104113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The innate immune system is the first line of defense against the invasion of pathogens. It can make a rapid immune response to the invading pathogenic microorganisms, thereby eliminating the invading pathogens and protecting the body from harm. microRNAs are a family of small non-coding ribonucleic acid molecules, which are important and multifunctional regulator of immune response. In this study, we studied the role of miR-132 as a key regulatory factor of IL-1β-mediated inflammation. The seed region of miR-132 can regulate gene expression by binding to the 3'UTR of IL-1β, and inhibit the expression of IL-1β at the post-transcriptional level. More importantly, miR-132 inhibits LPS-induced NF-κB signaling pathway by targeting IL-1β, thereby preventing excessive inflammatory response from causing autoimmune diseases. These results will help to better understand the complex regulatory mechanisms of teleost fishes.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Vidal R. Temporal Gene Expression Signature of Plasma Extracellular Vesicles-MicroRNAs from Post-Smolt Coho Salmon Challenged with Piscirickettsia salmonis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:602-614. [PMID: 34390423 DOI: 10.1007/s10126-021-10049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Liu H, Xie JF, Yu H, Ma Z, Yu YY, Yang Y. The early response expression profiles of miRNA-mRNA in farmed yellow catfish (Pelteobagrus fulvidraco) challenged with Edwardsiella tarda infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104018. [PMID: 33476668 DOI: 10.1016/j.dci.2021.104018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Edwardsiella tarda, the bacterial pathogen that causes ascites disease and red-head disease, poses a serious threat to yellow catfish (Pelteobagrus fulvidraco) aquaculture. In this study, the spleens of E. tarda-infected and non-infected yellow catfish were sequenced to obtain the microRNA (miRNA) and mRNA expression profiles. We obtained 657 differentially expressed (DE) miRNAs and 6867 DE mRNAs between two groups and annotated them using the KEGG database. In addition, the 43 negatively correlated miRNA-mRNA pairs were identified using integrated miRNA-mRNA analysis, which including immune-related miRNAs and target genes such as miR-144, miR-1260, miR-1388, miR-33, miR-338, miR-181b, miR-34c, miR-135 and CLEC4E, LITR, PIKfyve, NCF4, IL-12β, IP6K2, TNFRSF9, IL-4Rα, IRF2, Mx2. We verified 8 DE miRNAs pairs and 10 DE mRNAs by quantitative real-time PCR. Finally, the CLEC4E and Mx2 mRNAs were selected for further verification using in situ hybridization. Together, our results provide valuable information for further analyses of the mechanisms of yellow catfish defense against E. tarda infection.
Collapse
Affiliation(s)
- Hua Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Jia-Fang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Ying-Ying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, China.
| |
Collapse
|
11
|
Phosphatase and Tensin Homolog (PTEN) of Japanese Flounder-Its Regulation by miRNA and Role in Autophagy, Apoptosis and Pathogen Infection. Int J Mol Sci 2020; 21:ijms21207725. [PMID: 33086544 PMCID: PMC7589652 DOI: 10.3390/ijms21207725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with important roles in diverse biological processes including immunity. Japanese flounder (Paralichthys olivaceus) is an aquaculture fish species susceptible to the infection of bacterial and viral pathogens including Edwardsiella tarda. In a previous study, pol-miR-novel_547, a novel miRNA of flounder with unknown function, was found to be induced by E. tarda. In the present study, we investigated the regulation and function of pol-miR-novel_547 and its target gene. We found that pol-miR-novel_547 was regulated differently by E. tarda and the viral pathogen megalocytivirus, and pol-miR-novel_547 repressed the expression of PTEN (phosphatase and tensin homolog) of flounder (PoPTEN). PoPTEN is ubiquitously expressed in multiple tissues of flounder and responded to bacterial and viral infections. Interference with PoPTEN expression in flounder cells directly or via pol-miR-novel_547 promoted E. tarda invasion. Consistently, in vivo knockdown of PoPTEN enhanced E. tarda dissemination in flounder tissues, whereas in vivo overexpression of PoPTEN attenuated E. tarda dissemination but facilitated megalocytivirus replication. Further in vitro and in vivo studies showed that PoPTEN affected autophagy activation via the AKT/mTOR pathway and also modulated the process of apoptosis. Together these results reveal for the first time a critical role of fish PTEN and its regulatory miRNA in pathogen infection, autophagy, and apoptosis.
Collapse
|
12
|
Micro-Transcriptome Analysis Reveals Immune-Related MicroRNA Regulatory Networks of Paralichthys olivaceus Induced by Vibrio anguillarum Infection. Int J Mol Sci 2020; 21:ijms21124252. [PMID: 32549342 PMCID: PMC7352997 DOI: 10.3390/ijms21124252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play a vital part in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus) is an important aquaculture fish species that has suffered from bacterial diseases, including that caused by Vibrio anguillarum infection. In a previous study, we examined the messenger RNA (mRNA) expression profiles of flounder during V. anguillarum infection and identified 26 hub genes in the flounder immune response. In this study, we performed the micro-transcriptome analysis of flounder spleen in response to V. anguillarum infection at 3 different time points. Approximately 277 million reads were obtained, from which 1218 miRNAs were identified, including 740 known miRNAs and 478 novel miRNAs. Among the miRNAs, 206 were differentially expressed miRNAs (DEmiRs), and 104 of the 206 DEmiRs are novel miRNAs identified for the first time. Most of the DEmiRs were strongly time-dependent. A total of 1355 putative target genes of the DEmiRs (named DETGs) were identified based on integrated analysis of miRNA-mRNA expressions. The DETGs were enriched in multiple functional categories associated with immunity. Thirteen key DEmiRs and 66 immune DETGs formed an intricate regulatory network constituting 106 pairs of miRNAs and DETGs that span five immune pathways. Furthermore, seven of the previously identified hub genes were found to be targeted by 73 DEmiRs, and together they formed interlinking regulatory networks. These results indicate that V. anguillarum infection induces complicated miRNA response with extensive influences on immune gene expression in Japanese flounder.
Collapse
|
13
|
Li WR, Guan XL, Jiang S, Sun L. The novel fish miRNA pol-miR-novel_171 and its target gene FAM49B play a critical role in apoptosis and bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103616. [PMID: 31958496 DOI: 10.1016/j.dci.2020.103616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a type of small, non-coding RNAs that participate in many cellular and biological processes by regulating mRNA stability. In a previous study, we identified 96 Japanese flounder (Paralichthys olivaceus) miRNAs responsive to the infection of Edwardsiella tarda, a bacterial pathogen to fish as well as humans. In the current study, we examined the regulation and function of one novel miRNA, i.e., pol-miR-novel_171, from the above 96 miRNA pool. We found that pol-miR-novel_171 expression was regulated by E. tarda and megalocytivirus in a pathogen-specific manner, and that pol-miR-novel_171 targeted the gene of FAM49B (family with sequence similarity 49 member B) of flounder (named PoFAM49B) by negative interaction with the 3'-UTR of PoFAM49B. To date, the function fish FAM49B is unknown. We found that PoFAM49B expressed in multiple tissues of flounder, and recombinant PoFAM49B interacted with and inhibited the growth of Gram-negative bacterial pathogens. Interference with PoFAM49B expression in flounder cells promoted E. tarda infection. Similar effects on E. tarda infection were observed with pol-miR-novel_171 overexpression. Consistently, in vivo knockdown of PoFAM49B in flounder enhanced E. tarda dissemination in fish tissues. Furthermore, interference with PoFAM49B expression, or overexpression of pol-miR-novel_171, promoted apoptosis of flounder cells, while in vitro and in vivo knockdown of PoFAM49B augmented the expressions of key apoptosis-associated genes. These results revealed for the first time the immune function of fish FAM49B and the regulatory mechanism of a novel fish miRNA by demonstrating that pol-miR-novel_171, via PoFAM49B, played a critical role in apoptosis and anti-bacterial immunity.
Collapse
Affiliation(s)
- Wen-Rui Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
14
|
Liu S, Ning XH, Guan XL, Li XP, Sun L. Characterization of Streptococcus iniae-induced microRNA profiles in Paralichthys olivaceus and identification of pol-3p-10740_175 as a regulator of antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:860-867. [PMID: 31756455 DOI: 10.1016/j.fsi.2019.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6 h and 24 h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.
Collapse
Affiliation(s)
- Shuang Liu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Ning
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Guan XL, Zhang BC, Sun L. Japanese flounder pol-miR-3p-2 suppresses Edwardsiella tarda infection by regulation of autophagy via p53. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103531. [PMID: 31668931 DOI: 10.1016/j.dci.2019.103531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that play vital roles in diverse physiological processes including immunity. In this study, we investigated the regulatory mechanism and function of a novel Japanese flounder (Paralichthys olivaceus) miRNA, pol-miR-3p-2. pol-miR-3p-2 was responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. pol-miR-3p-2 negatively regulated the expression of p53 through interaction with the 3'UTR of p53. Overexpression of pol-miR-3p-2 promoted autophagy, resulting in augmented production of LC3-II, while knockdown of p53 increased the level of beclin, a key factor of autophagy. In vivo and in vitro studies showed that E. tarda infection induced autophagy in flounder, and pol-miR-3p-2 inhibited the infectivity of E. tarda. Together these results indicate that pol-miR-3p-2 regulates autophagy through the target gene p53, thus revealing a regulatory link between p53 and autophagy in teleost, and that pol-miR-3p-2 plays an important role in the immune defense against E. tarda.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Li WR, Hu YH, Jiang S, Sun L. Global profiling and characterization of Japanese flounder (Paralichthys olivaceus) kidney microRNAs regulated by Edwardsiella tarda infection in a time-dependent fashion. FISH & SHELLFISH IMMUNOLOGY 2019; 93:766-780. [PMID: 31421241 DOI: 10.1016/j.fsi.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is an important economic fish species farmed in China and other countries. It is susceptible to infection by Edwardsiella tarda, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by E. tarda at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after E. tarda infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA-mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced E. tarda invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.
Collapse
Affiliation(s)
- Wen-Rui Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
17
|
Liu Y, Liu Y, Han M, Du X, Liu X, Zhang Q, Liu J. Edwardsiella tarda-induced miR-7a functions as a suppressor in PI3K/AKT/GSK3β signaling pathway by targeting insulin receptor substrate-2 (IRS2a and IRS2b) in Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:477-485. [PMID: 30940579 DOI: 10.1016/j.fsi.2019.03.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
To study the effect of Edwardsiella tarda infection on miRNAs expression profile in Japanese flounder, fish were injected intraperitoneally with E. tarda. The miRNAs involved in regulating immune responses were analyzed by high-throughput sequencing. A total of 164 mature miRNAs were identified, of which 17 miRNAs were differentially expressed (DE miRNAs) after E. tarda infection, indicating that they were immune-related miRNAs. To further examine the relationship between the miRNAs and their predicted target mRNAs, a total of 22 predicted target mRNAs, mainly related to endocytic signaling pathway, NF-κB signaling pathway, and p53 signaling pathway, were detected with miRNA mimics in HEK-293T cells by dual-luciferase reporter experiments. Finally, we confirmed that insulin receptor substrate-2 (IRS2a and IRS2b) were regulated by miR-7a. And the target sites of the 3' untranslated region (UTR) of IRS2a and IRS2b were verified by dual-luciferase reporter experiments. Furthermore, we found that the E. tarda and LPS significantly increased host miR-7a expression. In vivo and in vitro studies revealed that IRS2-mediated PI3K/AKT/GSK3β signaling pathway was suppressed. Taken together, these results implied that miR-7a might be a key regulator of PI3K/AKT/GSK3β signaling pathway via suppressing the IRS2a and IRS2b genes.
Collapse
Affiliation(s)
- Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Department of Life Science and Engineering, Jining University, Jining, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
18
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|