1
|
Hopke A, Viens AL, Alexander NJ, Mun SJ, Mansour MK, Irimia D. Spleen tyrosine kinase inhibitors disrupt human neutrophil swarming and antifungal functions. Microbiol Spectr 2025; 13:e0254921. [PMID: 39601545 PMCID: PMC11705959 DOI: 10.1128/spectrum.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging. Here, we report that spleen tyrosine kinase (SYK) inhibitors severely impair neutrophil swarming responses, resulting in the complete loss of fungal restriction. These findings are enabled by a microscale platform to probe the biology of human neutrophils swarming against uniformly sized clusters of growing Candida albicans, a representative opportunistic fungal pathogen. We take advantage of the ability to monitor large arrays of swarms and quantify the effect of multiple chemical inhibitors on different phases of human neutrophil swarming. We show that inhibitors that interfere with PI3Ky signaling disrupt the regulation of the initiation of swarming, while the activation of JNK signaling is essential for the activation of biochemical antifungal functions. Furthermore, we reveal that granulocyte colony-stimulating factors (GCSF and GM-CSF) can partially rescue the antifungal functions of neutrophils exposed to SYK inhibitors. These findings advance our understanding of neutrophil swarming biology in humans and lay the foundation for novel therapeutics that may restore neutrophil function during immunosuppression. IMPORTANCE Neutrophils can amplify their destructive power through swarming, a crucial process against large targets that individual neutrophils cannot destroy. However, the molecular mechanisms controlling this process are just emerging. Here, we leveraged microscale tools to probe the biology of swarming against fungi. We used multiple chemical inhibitors and mapped SYK, PI3Ky, and JNK signaling roles during human neutrophil swarming against fungal clusters of Candida albicans. We also found that treating human neutrophils with GCSF and GM-CSF rescues some neutrophil antifungal function during SYK inhibition. These findings advance our understanding of swarming biology in humans while laying the foundation for developing therapeutics that enhance neutrophil function during immunosuppression.
Collapse
Affiliation(s)
- Alex Hopke
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Adam L. Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J. Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok Joon Mun
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Biersack B. The Antifungal Potential of Niclosamide and Structurally Related Salicylanilides. Int J Mol Sci 2024; 25:5977. [PMID: 38892165 PMCID: PMC11172841 DOI: 10.3390/ijms25115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Human mycoses cover a diverse field of fungal diseases from skin disorders to systemic invasive infections and pose an increasing global health problem based on ineffective treatment options, the hampered development of new efficient drugs, and the emergence of resistant fungal strains. Niclosamide is currently applied for the treatment of worm infections. Its mechanisms of action, which include the suppression of mitochondrial oxidative phosphorylation (also known as mitochondrial uncoupling), among others, has led to a repurposing of this promising anthelmintic drug for the therapy of further human diseases such as cancer, diabetes, and microbial infections. Given the urgent need to develop new drugs against fungal infections, the considerable antifungal properties of niclosamide are highlighted in this review. Its chemical and pharmacological properties relevant for drug development are also briefly mentioned, and the described mitochondria-targeting mechanisms of action add to the current arsenal of approved antifungal drugs. In addition, the activities of further salicylanilide-based niclosamide analogs against fungal pathogens, including agents applied in veterinary medicine for many years, are described and discussed for their feasibility as new antifungals for humans. Preliminary structure-activity relationships are determined and discussed. Various salicylanilide derivatives with antifungal activities showed increased oral bioavailabilities when compared with niclosamide. The simple synthesis of salicylanilide-based drugs also vouchsafes a broad and cost-effective availability for poorer patient groups. Pertinent literature is covered until 2024.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
5
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body’s response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5′ AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review’s objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin’s efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| |
Collapse
|
6
|
Guanidine-Containing Antifungal Agents against Human-Relevant Fungal Pathogens (2004-2022)-A Review. J Fungi (Basel) 2022; 8:jof8101085. [PMID: 36294650 PMCID: PMC9605545 DOI: 10.3390/jof8101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The guanidine moiety is typically a highly basic group, and can be found in a wide variety of drugs, such as zanamivir (Relenza) and metformin (Fortamet), as well as in biologically active compounds for numerous disease areas, including central nervous system (CNS) diseases and chemotherapeutics. This review will focus on antifungal agents which contain at least one guanidine group, for the treatment of human-related fungal pathogens, described in the literature between 2004 and 2022. These compounds include small molecules, steroids, polymers, metal complexes, sesquiterpenes, natural products, and polypeptides. It shall be made clear that a diverse range of guanidine-containing derivatives have been published in the literature and have antifungal activity, including efficacy in in vivo experiments.
Collapse
|
7
|
Xu S, Cao Y, Luo Y, Xiao D, Wang W, Wang Z, Yang X. Synthesis, Anti-Proliferative Evaluation and Mechanism of 4-Trifluoro Methoxy Proguanil Derivatives with Various Carbon Chain Length. Molecules 2021; 26:molecules26195775. [PMID: 34641319 PMCID: PMC8510509 DOI: 10.3390/molecules26195775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
Among the known biguanide drugs, proguanil has the best antiproliferative activity. In contrast, newly synthesized biguanide derivatives containing fluorine atoms have excellent biological activity, among which trifluoromethoxy compounds show the strongest ability. Preliminary work in our laboratory exhibited that n-heptyl containing proguanil derivatives on one alkyl chain side have better biological activity than those with a shorter carbon chain. However, the relationship between the length of the carbon chain and the activity of the compounds is unknown. In this study, we synthesized 10 new trifluoromethoxy-containing proguanil derivatives with various carbon chain lengths. The phenyl side is fixed as the trifluoromethoxy group with change of carbon chain length in alkyl chain side. It was found that the anti-cancer abilities of 5C-8C with n-pentyl to n-octyl groups was significantly better than that of proguanil in the five human cancer cell lines. The colony formation assay demonstrated that 6C-8C at 0.5 to 1.0 μM significantly inhibited the colony formation of human cancer cell lines, much stronger than that of proguanil. Pharmacologically, 8C activates AMPK, leading to inactivation of the mTOR/p70S6K/4EBP1 pathway. Thus, these novel compounds have a great potential for developing new anti-cancer candidates.
Collapse
Affiliation(s)
- Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (S.X.); (Y.C.); (D.X.); (Z.W.)
| | - Yufang Cao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (S.X.); (Y.C.); (D.X.); (Z.W.)
| | - Yu Luo
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.L.); (W.W.)
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (S.X.); (Y.C.); (D.X.); (Z.W.)
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.L.); (W.W.)
| | - Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (S.X.); (Y.C.); (D.X.); (Z.W.)
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (S.X.); (Y.C.); (D.X.); (Z.W.)
- Correspondence: ; Tel.: +86-158-7406-6132
| |
Collapse
|
8
|
Nguyen GT, Xu S, Adams W, Leong JM, Bunnell SC, Mansour MK, Sykes DB, Mecsas J. Neutrophils require SKAP2 for reactive oxygen species production following C-type lectin and Candida stimulation. iScience 2021; 24:102871. [PMID: 34386732 PMCID: PMC8346660 DOI: 10.1016/j.isci.2021.102871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling cascades converting the recognition of pathogens to efficient inflammatory responses by neutrophils are critical for host survival. SKAP2, an adaptor protein, is required for reactive oxygen species (ROS) generation following neutrophil stimulation by integrins, formyl peptide receptors, and for host defense against the Gram-negative bacterial pathogens, Klebsiella pneumoniae and Yersinia pseudotuberculosis. Using neutrophils from murine HoxB8-immortalized progenitors, we show that SKAP2 in neutrophils is crucial for maximal ROS response to purified C-type lectin receptor agonists and to the fungal pathogens, Candida glabrata and Candida albicans, and for robust killing of C. glabrata. Inside-out signaling to integrin and Syk phosphorylation occurred independently of SKAP2 after Candida infection. However, Pyk2, ERK1/2, and p38 phosphorylation were significantly reduced after infection with C. glabrata and K. pneumoniae in Skap2-/- neutrophils. These data demonstrate the importance of SKAP2 in ROS generation and host defense beyond antibacterial immunity to include CLRs and Candida species.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - John M. Leong
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Stephen C. Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02115, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
9
|
Candida auris Cell Wall Mannosylation Contributes to Neutrophil Evasion through Pathways Divergent from Candida albicans and Candida glabrata. mSphere 2021; 6:e0040621. [PMID: 34160238 PMCID: PMC8265655 DOI: 10.1128/msphere.00406-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Candida auris, a recently emergent fungal pathogen, has caused invasive infections in health care settings worldwide. Mortality rates approach 60% and hospital spread poses a public health threat. Compared to other Candida spp., C. auris avoids triggering the antifungal activity of neutrophils, innate immune cells that are critical for responding to many invasive fungal infections, including candidiasis. However, the mechanism underpinning this immune evasion has been largely unknown. Here, we show that C. auris cell wall mannosylation contributes to the evasion of neutrophils ex vivo and in a zebrafish infection model. Genetic disruption of mannosylation pathways (PMR1 and VAN1) diminishes the outer cell wall mannan, unmasks immunostimulatory components, and promotes neutrophil engagement, phagocytosis, and killing. Upon examination of these pathways in other Candida spp. (Candida albicans and Candida glabrata), we did not find an impact on neutrophil interactions. These studies show how C. auris mannosylation contributes to neutrophil evasion though pathways distinct from other common Candida spp. The findings shed light on innate immune evasion for this emerging pathogen. IMPORTANCE The emerging fungal pathogen Candida auris presents a global public health threat. Therapeutic options are often limited for this frequently drug-resistant pathogen, and mortality rates for invasive disease are high. Previous study has demonstrated that neutrophils, leukocytes critical for the antifungal host defense, do not efficiently recognize and kill C. auris. Here, we show how the outer cell wall of C. auris promotes immune evasion. Disruption of this mannan polysaccharide layer renders C. auris susceptible to neutrophil killing ex vivo and in a zebrafish model of invasive candidiasis. The role of these mannosylation pathways for neutrophil evasion appears divergent from other common Candida species.
Collapse
|
10
|
Enz A, Mueller SC, Warnke P, Ellenrieder M, Mittelmeier W, Klinder A. Periprosthetic Fungal Infections in Severe Endoprosthetic Infections of the Hip and Knee Joint-A Retrospective Analysis of a Certified Arthroplasty Centre of Excellence. J Fungi (Basel) 2021; 7:404. [PMID: 34064002 PMCID: PMC8224054 DOI: 10.3390/jof7060404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The treatment of periprosthetic joint infections (PJI), and especially of re-infections, poses a highly complex problem in orthopaedic surgery. While fungal infections are rare, they present a special challenge. The therapy is often protracted and based on limited evidence. A total of 510 hip and knee revision surgeries were analysed for the occurrence of bacterial and fungal PJI. In patients with PJI, the duration of the hospital stay and the incidence of disarticulation of the infected joint were recorded. Out of the analysed revision arthroplasties, 43.5% were due to PJI. Monomicrobial infection occurred in 55.2%, dual microbial infection in 21.4%, and polymicrobial (≥3 different bacterial or fungal species) infection in 17.2% of the cases. Overall, Candida species were detected in 12.4% cases. Candida albicans was the main fungal pathogen. In 6.9% of cases, disarticulation of the joint was the only option to control PJI. The detection of polymicrobial infection more than doubled in follow-up revisions and there was a strong association between detection of Candida infection and disarticulation (OR 9.39). The majority of fungal infections were mixed infections of bacteria and Candida albicans. The choice of a biofilm penetrating antimycotic, e.g., caspofungin, together with a sufficient standard procedure for detection and surgical treatment can help to control the infection situation. Fungal infection often proves to be more difficult to treat than anticipated and is more frequent than expected.
Collapse
Affiliation(s)
- Andreas Enz
- Orthopaedic Clinic and Policlinic, University Medicine Rostock, 18057 Rostock, Germany; (M.E.); (W.M.); (A.K.)
| | - Silke C. Mueller
- Institute of Pharmacology and Toxicology, University Medicine Rostock, 18057 Rostock, Germany;
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Martin Ellenrieder
- Orthopaedic Clinic and Policlinic, University Medicine Rostock, 18057 Rostock, Germany; (M.E.); (W.M.); (A.K.)
| | - Wolfram Mittelmeier
- Orthopaedic Clinic and Policlinic, University Medicine Rostock, 18057 Rostock, Germany; (M.E.); (W.M.); (A.K.)
| | - Annett Klinder
- Orthopaedic Clinic and Policlinic, University Medicine Rostock, 18057 Rostock, Germany; (M.E.); (W.M.); (A.K.)
| |
Collapse
|
11
|
Kim SH, Semenya D, Castagnolo D. Antimicrobial drugs bearing guanidine moieties: A review. Eur J Med Chem 2021; 216:113293. [PMID: 33640673 DOI: 10.1016/j.ejmech.2021.113293] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Compounds incorporating guanidine moieties constitute a versatile class of biologically interesting molecules with a wide array of applications. As such, guanidines have been exploited as privileged structural motifs in designing novel drugs for the treatment of various infectious and non-infectious diseases. In designing anti-infective agents, this moiety carries great appeal by virtue of attributes such as hydrogen-bonding capability and protonatability at physiological pH in the context of interaction with biological targets. This review provides an overview of recent advances in hit-to-lead development studies of antimicrobial guanidine-containing compounds with the aim to highlight their structural diversity and the pharmacological relevance of the moiety to drug activity, insofar as possible. In so doing, emphasis is put on chemical and microbiological properties of such compounds in relation to antibacterial, antifungal and antimalarial activities.
Collapse
Affiliation(s)
- Seong-Heun Kim
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom
| | - Dorothy Semenya
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, United Kingdom.
| |
Collapse
|
12
|
A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. mBio 2020; 11:mBio.00986-20. [PMID: 32723917 PMCID: PMC7387795 DOI: 10.1128/mbio.00986-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal diseases are increasing in frequency, and new drug targets and antifungal drugs are needed to bolster therapy. The mechanisms by which pathogens obtain critical nutrients such as iron from heme during host colonization represent a promising target for therapy. In this study, we employed a fluorescent heme sensor to investigate heme homeostasis in Cryptococcus neoformans. We demonstrated that endocytosis is a key aspect of heme acquisition and that vacuolar and mitochondrial functions are important in regulating the pool of available heme in cells. Stress generated by oxidative conditions impacts the heme pool, as do the drugs artemisinin and metformin; these drugs have heme-related activities and are in clinical use for malaria and diabetes, respectively. Overall, our study provides insights into mechanisms of fungal heme acquisition and demonstrates the utility of the heme sensor for drug characterization in support of new therapies for fungal diseases. Pathogens must compete with hosts to acquire sufficient iron for proliferation during pathogenesis. The pathogenic fungus Cryptococcus neoformans is capable of acquiring iron from heme, the most abundant source in vertebrate hosts, although the mechanisms of heme sensing and acquisition are not entirely understood. In this study, we adopted a chromosomally encoded heme sensor developed for Saccharomyces cerevisiae to examine cytosolic heme levels in C. neoformans using fluorescence microscopy, fluorimetry, and flow cytometry. We validated the responsiveness of the sensor upon treatment with exogenous hemin, during proliferation in macrophages, and in strains defective for endocytosis. We then used the sensor to show that vacuolar and mitochondrial dysregulation and oxidative stress reduced the labile heme pool in the cytosol. Importantly, the sensor provided a tool to further demonstrate that the drugs artemisinin and metformin have heme-related activities and the potential to be repurposed for antifungal therapy. Overall, this study provides insights into heme sensing by C. neoformans and establishes a powerful tool to further investigate mechanisms of heme-iron acquisition in the context of fungal pathogenesis.
Collapse
|
13
|
Negoro PE, Xu S, Dagher Z, Hopke A, Reedy JL, Feldman MB, Khan NS, Viens AL, Alexander NJ, Atallah NJ, Scherer AK, Dutko RA, Jeffery J, Kernien JF, Fites JS, Nett JE, Klein BS, Vyas JM, Irimia D, Sykes DB, Mansour MK. Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to Candida Species. mBio 2020; 11:e02043-19. [PMID: 32398316 PMCID: PMC7218286 DOI: 10.1128/mbio.02043-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.
Collapse
Affiliation(s)
- Paige E Negoro
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex Hopke
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer L Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Feldman
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nida S Khan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison K Scherer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Dutko
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Jeffery
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John F Kernien
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - J Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Bruce S Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Irimia
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
15
|
Abstract
The prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multidrug-resistant strains such as C. auris. High mortality related to fungal infections points to major limitations of current antifungal therapy and an unmet need for new antifungal drugs. We screened a library of repurposed FDA-approved inhibitors to identify compounds with activities against a diverse range of fungi in varied phases of growth. The assays identified alexidine dihydrochloride (AXD) to have pronounced antifungal activity, including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro and prevented biofilm growth in vivo. Thus, AXD has the potential to be developed as a pan-antifungal, antibiofilm drug. Invasive fungal infections due to Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans constitute a substantial threat to hospitalized immunocompromised patients. Further, the presence of drug-recalcitrant biofilms on medical devices and emergence of drug-resistant fungi, such as Candida auris, introduce treatment challenges with current antifungal drugs. Worse, currently there is no approved drug capable of obviating preformed biofilms, which increase the chance of infection relapses. Here, we screened a small-molecule New Prestwick Chemical Library, consisting of 1,200 FDA-approved off-patent drugs against C. albicans, C. auris, and A. fumigatus, to identify those that inhibit growth of all three pathogens. Inhibitors were further prioritized for their potency against other fungal pathogens and their ability to kill preformed biofilms. Our studies identified the bis-biguanide alexidine dihydrochloride (AXD) as a drug with the highest antifungal and antibiofilm activity against a diverse range of fungal pathogens. Finally, AXD significantly potentiated the efficacy of fluconazole against biofilms, displayed low mammalian cell toxicity, and eradicated biofilms growing in mouse central venous catheters in vivo, highlighting its potential as a pan-antifungal drug. IMPORTANCE The prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multidrug-resistant strains such as C. auris. High mortality related to fungal infections points to major limitations of current antifungal therapy and an unmet need for new antifungal drugs. We screened a library of repurposed FDA-approved inhibitors to identify compounds with activities against a diverse range of fungi in varied phases of growth. The assays identified alexidine dihydrochloride (AXD) to have pronounced antifungal activity, including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro and prevented biofilm growth in vivo. Thus, AXD has the potential to be developed as a pan-antifungal, antibiofilm drug.
Collapse
|