1
|
Guo R, Zhao G, Bai G, Chen J, Han W, Cui N, Wang H. Depletion of mTOR ameliorates CD 4+ T cell pyroptosis by promoting autophagy activity in septic mice. Int Immunopharmacol 2023; 124:110964. [PMID: 37738689 DOI: 10.1016/j.intimp.2023.110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
A reduction in the number of CD4+ T cells is a central part of the immunosuppression phase of sepsis and leads to impaired immune defense ability and increased mortality. Pyroptosis, a newly discovered programmed cell death, was confirmed to be an important mechanism of lymphocytopenia in a lot of human diseases and is under the regulation of autophagy. The mammalian target of rapamycin (mTOR) pathway is closely related to CD4+ T-cell survival. Whether the mTOR pathway influences CD4+ T cell pyroptosis by regulating autophagy remains unknown. In this study, a septic mouse model was developed using cecal ligation and puncture (CLP) to explore the degree of pyroptosis and autophagy of CD4+ T cells. T-cell-specific mTOR/TSC1-knockout mice were used to investigate the role of mTOR pathway in the regulation of CD4+ T cell pyroptosis. Bafilomycin, a specific autophagy inhibitor, was used to verify the regulatory effect of autophagy on pyroptosis in septic mice. We observed aggravated pyroptosis in CD4+ T cells in CLP mice accompanied by impaired autophagy activity and an overactivated mTOR signaling pathway. Depletion of mTOR relieved autophagy deficiency and reduced the proportion of pyroptotic CD4+ T cells. In T-cell-specific mTOR-knockout mice treated with bafilomycin, the protective effect of mTOR depletion vanished. This indicated that autophagy negatively regulates CD4+ T cell pyroptosis, which is under the control of the mTOR pathway. Taken together, our findings emphasize the importance of pyroptosis in sepsis-induced lymphopenia and reveal the regulatory effects of the mTOR pathway and the role of autophagy in this regulation.
Collapse
Affiliation(s)
- Ran Guo
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guangxu Bai
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Wen Han
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Beijing 100035, China.
| |
Collapse
|
2
|
Yang L, Zhou L, Li F, Chen X, Li T, Zou Z, Zhi Y, He Z. Diagnostic and prognostic value of autophagy-related key genes in sepsis and potential correlation with immune cell signatures. Front Cell Dev Biol 2023; 11:1218379. [PMID: 37701780 PMCID: PMC10493283 DOI: 10.3389/fcell.2023.1218379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Autophagy is involved in the pathophysiological process of sepsis. This study was designed to identify autophagy-related key genes in sepsis, analyze their correlation with immune cell signatures, and search for new diagnostic and prognostic biomarkers. Methods: Whole blood RNA datasets GSE65682, GSE134347, and GSE134358 were downloaded and processed. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify autophagy-related key genes in sepsis. Then, key genes were analyzed by functional enrichment, protein-protein interaction (PPI), transcription factor (TF)-gene and competing endogenous RNA (ceRNA) network analysis. Subsequently, key genes with diagnostic efficiency and prognostic value were identified by receiver operating characteristic (ROC) curves and survival analysis respectively. The signatures of immune cells were estimated using CIBERSORT algorithm. The correlation between significantly different immune cell signatures and key genes was assessed by correlation analysis. Finally, key genes with both diagnostic and prognostic value were verified by RT-qPCR. Results: 14 autophagy-related key genes were identified and their TF-gene and ceRNA regulatory networks were constructed. Among the key genes, 11 genes (ATIC, BCL2, EEF2, EIF2AK3, HSPA8, IKBKB, NLRC4, PARP1, PRKCQ, SH3GLB1, and WIPI1) had diagnostic efficiency (AUC > 0.90) and 5 genes (CAPN2, IKBKB, PRKCQ, SH3GLB1 and WIPI1) were associated with survival prognosis (p-value < 0.05). IKBKB, PRKCQ, SH3GLB1 and WIPI1 had both diagnostic and prognostic value, and their expression were verified by RT-qPCR. Analysis of immune cell signatures showed that the abundance of neutrophil, monocyte, M0 macrophage, gamma delta T cell, activated mast cell and M1 macrophage subtypes increased in the sepsis group, while the abundance of resting NK cell, resting memory CD4+ T cell, CD8+ T cell, naive B cell and resting dendritic cell subtypes decreased. Most of the key genes correlated with the predicted frequencies of CD8+ T cells, resting memory CD4+ T cells, M1 macrophages and naive B cells. Conclusion: We identified autophagy-related key genes with diagnostic and prognostic value in sepsis and discovered associations between key genes and immune cell signatures. This work may provide new directions for the discovery of promising biomarkers for sepsis.
Collapse
Affiliation(s)
- Li Yang
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fangyi Li
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaotong Chen
- Department of Health Management Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zijun Zou
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaowei Zhi
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhijie He
- Department of Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
USP9x promotes CD8 + T-cell dysfunction in association with autophagy inhibition in septic liver injury. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-10. [PMID: 36514222 PMCID: PMC10157537 DOI: 10.3724/abbs.2022174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sepsis is a life-threatening condition manifested by concurrent inflammation and immunosuppression. Ubiquitin-specific peptidase 9, X-linked (USP9x), is a USP domain-containing deubiquitinase which is required in T-cell development. In the present study, we investigate whether USP9x plays a role in hepatic CD8 + T-cell dysfunction in septic mice. We find that CD8 + T cells are decreased in the blood of septic patients with liver injury compared with those without liver injury, the CD4/CD8 ratio is increased, and the levels of cytolytic factors, granzyme B and perforin are downregulated. The number of hepatic CD8 + T cells and USP9x expression are both increased 24 h after cecal ligation and puncture-induced sepsis in a mouse model, a pattern similar to liver injury. The mechanism involves promotion of CD8 + T-cell dysfunction by USP9x associated with suppression of cell cytolytic activity via autophagy inhibition, which is reversed by the USP9x inhibitor WP1130. In the in vivo studies, autophagy is significantly increased in hepatic CD8 + T cells of septic mice with conditional knockout of mammalian target of rapamycin. This study shows that USP9x has the potential to be used as a therapeutic target in septic liver injury.
Collapse
|
4
|
mTOR Modulates the Endoplasmic Reticulum Stress-Induced CD4+ T Cell Apoptosis Mediated by ROS in Septic Immunosuppression. Mediators Inflamm 2022; 2022:6077570. [PMID: 35915740 PMCID: PMC9338879 DOI: 10.1155/2022/6077570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/02/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction When sepsis attacks the body, the excessive reactive oxygen species (ROS) production can result to endoplasmic reticulum stress (ERS) and eventually cause lymphocyte apoptosis. The mammalian target of rapamycin (mTOR) is essential for regulating lymphocyte apoptosis; we hypothesized that it mediates CD4+ T cell apoptosis during ROS-related ERS. Method We, respectively, used ROS and ERS blockers to intervene septic mice and then detected ERS protein expression levels to verify the relationship between them. Additionally, we constructed T cell-specific mTOR and TSC1 gene knockout mice to determine the role of mTOR in ROS-mediated, ERS-induced CD4+ T cell apoptosis. Results Blocking ROS significantly suppressed the CD4+ T cell apoptosis associated with the reduction in ERS, as revealed by lower levels of GRP78 and CHOP. ERS rapidly induced mTOR activation, leading to the induction of CD4+ T cell apoptosis. However, mTOR knockout mice displayed reduced expression of apoptotic proteins and less ER vesiculation and expansion than what was observed in the wild-type sepsis controls. Conclusion By working to alleviate ROS-mediated, ERS-induced CD4+ T cell apoptosis, the mTOR pathway is vital for CD4+ T cell survival in sepsis mouse model.
Collapse
|
5
|
Bai G, Wang H, Cui N. mTOR pathway mediates endoplasmic reticulum stress-induced CD4 + T cell apoptosis in septic mice. Apoptosis 2022; 27:740-750. [PMID: 35759162 PMCID: PMC9482898 DOI: 10.1007/s10495-022-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been well documented to participate in the pathophysiological processes of apoptosis in many diseases. Inhibition of ERS ameliorates pathological organ injury. However, the upstream signaling pathways and molecular regulatory mechanisms of which are still unknown. mTOR, an evolutionarily conserved protein kinase, is a key regulator of apoptosis. Hence, in this study, a classical cecal ligation and puncture (CLP) sepsis model was constructed by using the T cell-specific knockout mTOR and TSC1 (Tuberous Sclerosis Complex, the inhibitor of mTOR signaling pathway) mice to explore the underlying signaling pathway and molecular mechanism of host immune imbalance caused by apoptosis in sepsis. We found that mTOR may modulate septic T cell apoptosis by regulating Akt-IRE1-JNK pathway. To further clarify the possible mechanism, the specific inhibitors of PI3K-Akt and IRE1-JNK were used to intervene in mice before/after CLP, respectively. By analyzing the proteins of mTOR-ERS signaling pathway and the expression of apoptosis-related proteins and genes, we found that mTOR mediated the ER stress induced CD4+ T cell apoptosis in Septic mice by negatively regulating the Akt-IRE1-JNK-Caspase 3 signaling cascades. These results indicate that mTOR-Akt-IRE1α-JNK signaling pathway mediated the Endoplasmic reticulum stress induced CD4+ T cell apoptosis in Septic mice.
Collapse
Affiliation(s)
- Guangxu Bai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China. .,Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, China.
| |
Collapse
|
6
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Autophagy Regulation on Pyroptosis: Mechanism and Medical Implication in Sepsis. Mediators Inflamm 2021; 2021:9925059. [PMID: 34257519 PMCID: PMC8253640 DOI: 10.1155/2021/9925059] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is defined as a life-threatening disease involving multiple organ dysfunction caused by dysregulated host responses to infection. To date, sepsis remains a dominant cause of death among critically ill patients. Pyroptosis is a unique form of programmed cell death mediated by the gasdermin family of proteins and causes lytic cell death and release of proinflammatory cytokines. Although there might be some positive aspects to pyroptosis, it is regarded as harmful during sepsis and needs to be restricted. Autophagy was originally characterized as a homeostasis-maintaining mechanism in living cells. In the past decade, its function in negatively modulating pyroptosis and inflammation during sepsis has attracted increased attention. Here, we present a comprehensive review of the regulatory effect of autophagy on pyroptosis during sepsis, including the latest advances in our understanding of the mechanism and signaling pathways involved, as well as the potential therapeutic application in sepsis.
Collapse
|
8
|
Impact of mTOR signaling pathway on CD8+ T cell immunity through Eomesodermin in response to invasive candidiasis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:370-378. [PMID: 33972181 DOI: 10.1016/j.jmii.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND We investigated the effect of the mammalian target of rapamycin (mTOR) pathway on CD8+ T cell immunity through Eomesodermin (Eomes) in intensive care unit (ICU) patients with invasive candidiasis (IC) and in a mouse model. METHODS We evaluated quantitative changes in parameters of the mTOR/phosphorylated ribosomal S6 kinase (pS6K) pathway and immune system at the onset of infection in ICU patients. The study was registered on 28 February 2017 at chictr.org.cn (ChiCTR-ROC-17010750). We also used a mouse model of Candida infection and constructed T-cell-specific mTOR and T-cell-specific tuberous sclerosis complex (TSC) 1 conditional knockout mice to elucidate the molecular mechanisms. RESULTS We enrolled 88 patients, including 8 with IC. The IC group had lower CD8+ T cell counts, higher serum levels of mTOR, pS6K, Eomes and interleukin (IL)-6. The mouse model with IC showed results consistent in the clinical study. The CD8+ T cell immune response to IC seemed to be weakened in TSC1 knockout mice compared with wild-type IC mice, demonstrating that mTOR activation resulted in the impaired CD8+ T cell immunity in IC. CONCLUSIONS In IC, the mTOR activation may play a vital role in impaired CD8+ T cell immunity through enhancing expression of Eomes. The study was registered on 28 February 2017 at chictr.org.cn (identifier ChiCTR-ROC-17010750).
Collapse
|
9
|
Wang L, Das JK, Kumar A, Peng HY, Ren Y, Xiong X, Yang JM, Song J. Autophagy in T-cell differentiation, survival and memory. Immunol Cell Biol 2021; 99:351-360. [PMID: 33141986 DOI: 10.1111/imcb.12422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Over the past decade, autophagy has emerged as a critical regulatory mechanism of the immune system through critically controlling various aspects of T cell biology and determining the fate of different T cell subsets. Autophagy maintains T cell development and survival by regulating the degradation of organelles and apoptotic proteins. The autophagic process also impacts the formation of memory T cells. Alteration of autophagy in T cells may lead to a variety of pathological conditions such as inflammation, autoimmune diseases and cancer. In this review, we discuss how autophagy impacts T cell differentiation, survival and memory, and its implication in immunotherapy for various diseases.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
10
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Bai G, Wang H, Han W, Cui N. T-Bet Expression Mediated by the mTOR Pathway Influences CD4 + T Cell Count in Mice With Lethal Candida Sepsis. Front Microbiol 2020; 11:835. [PMID: 32431684 PMCID: PMC7214724 DOI: 10.3389/fmicb.2020.00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
The sustained high morbidity and mortality of Candida sepsis are mainly caused by compromise of host immunity. Clinically, it is often manifested as a significant decrease in CD4+ T cell count, although the mechanism is unclear. We established a lethal mice Candida sepsis model and used Murine Sepsis Score to group mice with different disease severity to establish the influence of T-bet expression on CD4+ T cell count in Candida sepsis. We found that CD4+ T cell count decreased in Candida-infected compared to uninfected mice, and the degree of decrease increased with aggravation of sepsis. Expression of T-bet similarly decreased with worsening of sepsis, but it was significantly enhanced in candidiasis in comparison of naïve state. To clarify its possible mechanism, we measured the activity of mammalian target of rapamycin (mTOR), which is a key regulator of T-bet expression. The mTOR pathway was activated after infection and its activity increased with progression of sepsis. We used mice with T-cell-specific knockout of mTOR or tuberous sclerosis complex (TSC)1 to further inhibit or strengthen the mTOR signaling pathway. We found that mTOR deletion mice had a higher CD4+ T cell count by regulating T-bet expression, and the result in TSC1 deletion mice was reversed. These results demonstrate that T-bet expression mediated by the mTOR pathway influences the CD4+ T cell count in mice with Candida sepsis.
Collapse
Affiliation(s)
- Guangxu Bai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Han
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|