1
|
Hu D, Yang Z, Zhang J, Liu G, Pi J, Xu J, Wang Y, Zhao Y. Copper homeostasis; A rapier between mycobacteria and macrophages. FASEB Bioadv 2025; 7:e1484. [PMID: 39781425 PMCID: PMC11705462 DOI: 10.1096/fba.2024-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Copper is a vital trace element crucial for mediating interactions between Mycobacterium and macrophages. Within these immune cells, copper modulates oxidative stress responses and signaling pathways, enhancing macrophage immune functions and facilitating Mycobacterium clearance. Conversely, copper may promote Mycobacterium escape from macrophages through various mechanisms: inhibiting macrophage activity, diminishing phagocytic and bactericidal capacities, and supporting Mycobacterium survival and proliferation. This paradox has intensified research focus on the regulatory role of copper in immune cell-pathogen interactions. Interactions among metal ions can affect Mycobacterium concentration, distribution, and activity within an organism. In this review, we have elucidated the role of copper in these interactions, focusing on the mechanisms by which this metal influences both the immune defense mechanisms of macrophages and the survival strategies of Mycobacterium. The findings suggest that manipulating copper levels could enhance macrophage bactericidal functions and potentially limit Mycobacterium resistance. Therefore, elucidating the regulatory role of copper is pivotal for advancing our understanding of metal homeostasis in immune cell-pathogen dynamics and TB pathogenesis. Furthermore, we recommend further investigation into the role of copper in TB pathogenesis to advance tuberculosis diagnosis and treatment and gain comprehensive insights into metal homeostasis in infectious disease contexts.
Collapse
Affiliation(s)
- Di Hu
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Institute of Laboratory Medicine, School of Medical TechnologyGuangdong Medical UniversityDongguanGuangdongChina
| | - Zisha Yang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Institute of Laboratory Medicine, School of Medical TechnologyGuangdong Medical UniversityDongguanGuangdongChina
| | - Jun‐ai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
| | - Ganbin Liu
- Department of RespirationDongguan 6th HospitalDongguanGuangdongChina
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Institute of Laboratory Medicine, School of Medical TechnologyGuangdong Medical UniversityDongguanGuangdongChina
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Institute of Laboratory Medicine, School of Medical TechnologyGuangdong Medical UniversityDongguanGuangdongChina
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Microbiology and Immunology DepartmentGuangdong Medical UniversityDongguanGuangdongChina
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsThe First Dongguan Affiliated Hospital, Guangdong Medical UniversityDongguanGuangdongChina
- Institute of Laboratory Medicine, School of Medical TechnologyGuangdong Medical UniversityDongguanGuangdongChina
- Microbiology and Immunology DepartmentGuangdong Medical UniversityDongguanGuangdongChina
| |
Collapse
|
2
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase Is Required for In Vitro and In Vivo Survival of Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:7862. [PMID: 39063103 PMCID: PMC11277061 DOI: 10.3390/ijms25147862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction, we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. A wildtype (WT) and a mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for the in vitro stress response and in vivo survival in macrophages and mice models of infection. The study demonstrates that the deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice; however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag-/- mice at 4 weeks post-infection. Moreover, Rag-/- mice infected with RvΔ0687 survived longer compared to those infected with the WT Mtb strain. Additionally, we observed a significant reduction in the bacterial burden in the spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to those infected with complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
3
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
4
|
Moukendza Koundi L, Ekomi Moure UA, Boni FG, Hamdi I, Fan L, Xie J. Mycobacterium tuberculosis Rv2617c is involved in stress response and phage infection resistance. Heliyon 2024; 10:e27400. [PMID: 38495141 PMCID: PMC10943396 DOI: 10.1016/j.heliyon.2024.e27400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the pathogen of human tuberculosis (TB). Resistance to numerous in vivo stresses, including oxidative stress, is determinant for M. tuberculosis intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. M. tuberculosis Rv2617c has been associated with oxidative stress response when interacting with other proteins in M. tuberculosis; however, its functional promiscuity and underlying molecular mechanisms remain elusive. In this study, we investigated the phenotypic changes of Mycobacterium smegmatis (M. smegmatis) expressing Rv2617c (Ms_Rv2617c) and its behavior in the presence of various in vitro stresses and phage infections. We found that Rv2617c conferred resistance to SDS and diamide while sensitizing M. smegmatis to oxidative stress (H2O2) and altered mycobacterial phenotypic properties (single-cell clone and motility), suggestive of reprogrammed mycobacterial cell wall lipid contents exemplified by increased cell wall permeability. Interestingly, we also found that Rv2617c promoted M. smegmatis resistance to infection by phages (SWU1, SWU2, D29, and TM4) and kept phage TM4 from destroying mycobacterial biofilms. Our findings provide new insights into the role of Rv2617c in resistance to oxide and acid stresses and report for the first time on its role in phage resistance in Mycobacterium.
Collapse
Affiliation(s)
- Liadrine Moukendza Koundi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Funmilayo Grâce Boni
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase is indispensable for pathogenesis of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571312. [PMID: 38168250 PMCID: PMC10760034 DOI: 10.1101/2023.12.12.571312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/ reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. Wildtype (WT) and mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for in-vitro stress response and in-vivo survival in macrophages and mice models of infection. The study demonstrates that Rv0687 is crucial for sustaining bacterial growth in nutrition-limited conditions. The deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α, and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag -/- mice at 4 weeks post-infection. Moreover Rag -/- mice infected with RvΔ0687 survived longer compared to WT Mtb strain. Additionally, we observed significant reduction in bacterial burden in spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
|
6
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
7
|
Aguilar-Pineda JA, Febres-Molina C, Cordova-Barrios CC, Campos-Olazával LM, Del-Carpio-Martinez BA, Ayqui-Cueva F, Gamero-Begazo PL, Gómez B. Study of the Rv1417 and Rv2617c Membrane Proteins and Their Interactions with Nicotine Derivatives as Potential Inhibitors of Erp Virulence-Associated Factor in Mycobacterium tuberculosis: An In Silico Approach. Biomolecules 2023; 13:biom13020248. [PMID: 36830617 PMCID: PMC9953637 DOI: 10.3390/biom13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The increasing emergence of Mycobacterium tuberculosis (Mtb) strains resistant to traditional anti-tuberculosis drugs has alarmed health services worldwide. The search for new therapeutic targets and effective drugs that counteract the virulence and multiplication of Mtb represents a challenge for the scientific community. Several studies have considered the erp gene a possible therapeutic target in the last two decades, since its disruption negatively impacts Mtb multiplication. This gene encodes the exported repetitive protein (Erp), which is located in the cell wall of Mtb. In vitro studies have shown that the Erp protein interacts with two putative membrane proteins, Rv1417 and Rv2617c, and the impairment of their interactions can decrease Mtb replication. In this study, we present five nicotine analogs that can inhibit the formation of heterodimers and trimers between these proteins. Through DFT calculations, molecular dynamics, docking, and other advanced in silico techniques, we have analyzed the molecular complexes, and show the effect these compounds have on protein interactions. The results show that four of these analogs can be possible candidates to counteract the pathogenicity of Mtb. This study aims to combine research on the Erp protein as a therapeutic target in the search for new drugs that serve to create new therapies against tuberculosis disease.
Collapse
Affiliation(s)
- Jorge Alberto Aguilar-Pineda
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Camilo Febres-Molina
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile 8370134, Chile
| | - Cinthia C. Cordova-Barrios
- Departamento de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Lizbeth M. Campos-Olazával
- Facultad de Arquitectura e Ingeniería Civil y del Ambiente, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Bruno A. Del-Carpio-Martinez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Flor Ayqui-Cueva
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Pamela L. Gamero-Begazo
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile 8370134, Chile
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Departamento de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Correspondence: ; Tel.: +51-982895967
| |
Collapse
|
8
|
Simper JD, Perez E, Schlesinger LS, Azad AK. Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens 2022; 11:pathogens11101153. [PMID: 36297211 PMCID: PMC9611686 DOI: 10.3390/pathogens11101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), is responsible for >1.5 million deaths worldwide annually. Innate immune cells, especially macrophages, are the first to encounter M.tb, and their response dictates the course of infection. During infection, macrophages exert a variety of immune factors involved in either controlling or promoting the growth of M.tb. Research on this topic has been performed in both in vitro and in vivo animal models with discrepant results in some cases based on the model of study. Herein, we review macrophage resistance and susceptibility immune factors, focusing primarily on recent advances in the field. We include macrophage cellular pathways, bioeffector proteins and molecules, cytokines and chemokines, associated microbiological factors and bacterial strains, and host genetic factors in innate immune genes. Recent advances in mechanisms underlying macrophage resistance and susceptibility factors will aid in the successful development of host-directed therapeutics, a topic emphasized throughout this review.
Collapse
Affiliation(s)
- Jan D. Simper
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Department of Microbiology, Immunology and Molecular Genetics, UT Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Esteban Perez
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Translational Sciences Program, UT Health San Antonio Graduate School of Biomedical Sciences, San Antonio, TX 78229, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| | - Abul K. Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| |
Collapse
|
9
|
Ma R, Gordon SV. Pyruvate supplementation and Mycobacterium bovis: A caveat. Tuberculosis (Edinb) 2022; 136:102257. [PMID: 36115126 DOI: 10.1016/j.tube.2022.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Novel In Silico Insights into Rv1417 and Rv2617c as Potential Protein Targets: The Importance of the Medium on the Structural Interactions with Exported Repetitive Protein (Erp) of Mycobacterium tuberculosis. Polymers (Basel) 2022; 14:polym14132577. [PMID: 35808623 PMCID: PMC9269478 DOI: 10.3390/polym14132577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, tuberculosis is the second leading cause of death from a monopathogenic transmitted disease, only ahead of COVID-19. The role of exported repetitive protein (Erp) in the virulence of Mycobacterium tuberculosis has been extensively demonstrated. In vitro and in vivo assays have identified that Erp interacts with Rv1417 and Rv2617c proteins, forming putative transient molecular complexes prior to localization to the cell envelope. Although new insights into the interactions and functions of Erp have emerged over the years, knowledge about its structure and protein–protein interactions at the atomistic level has not been sufficiently explored. In this work, we have combined several in silico methodologies to gain new insights into the structural relationship between these proteins. Two system conditions were evaluated by MD simulations: Rv1417 and Rv2617c embedded in a lipid membrane and another with a semi-polar solvent to mimic the electrostatic conditions on the membrane surface. The Erp protein was simulated as an unanchored structure. Stabilized structures were docked, and complexes were evaluated to recognize the main residues involved in protein–protein interactions. Our results show the influence of the medium on the structural conformation of proteins. Globular conformations were favored under high polarity conditions and showed a higher energetic affinity in complex formation. Meanwhile, disordered conformations were favored under semi-polar conditions and an increase in the number of contacts between residues was observed. In addition, the electrostatic potential analysis showed remarkable changes in protein interactions due to the polarity of the medium, demonstrating the relevance of Erp protein in heterodimer formation. On the other hand, contact analysis showed that several C-terminal residues of Erp were involved in the protein interactions, which seems to contradict experimental observations; however, these complexes could be transient forms. The findings presented in this work are intended to open new perspectives in the studies of Erp protein molecular interactions and to improve the knowledge about its function and role in the virulence of Mycobacterium tuberculosis.
Collapse
|
11
|
Ma R, Farrell D, Gonzalez G, Browne JA, Nakajima C, Suzuki Y, Gordon SV. The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium bovis. Front Microbiol 2022; 13:817952. [PMID: 35495699 PMCID: PMC9048740 DOI: 10.3389/fmicb.2022.817952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) contains the causative agents of tuberculosis (TB) in mammals. The archetypal members of the MTBC, Mycobacterium tuberculosis and Mycobacterium bovis, cause human tuberculosis and bovine tuberculosis, respectively. Although M. tuberculosis and M. bovis share over 99.9% genome identity, they show distinct host adaptation for humans and animals; hence, while the molecular basis of host adaptation is encoded in their genomes, the mechanistic basis of host tropism is still unclear. Exploration of the in vitro phenotypic consequences of known genetic difference between M. bovis and M. tuberculosis offers one route to explore genotype–phenotype links that may play a role in host adaptation. The TbD1 (“Mycobacterium tuberculosis deletion 1 region”) locus encompasses the mmpS6 and mmpL6 genes. TbD1 is absent in M. tuberculosis “modern” lineages (Lineages 2, 3, and 4) but present in “ancestral” M. tuberculosis (Lineages 1 and 7), Mycobacterium africanum lineages (Lineages 5 and 6), newly identified M. tuberculosis lineages (Lineages 8 and 9), and animal adapted strains, such as M. bovis. The function of TbD1 has previously been investigated in M. tuberculosis, where conflicting data has emerged on the role of TbD1 in sensitivity to oxidative stress, while the underlying mechanistic basis of such a phenotype is unclear. In this study, we aimed to shed further light on the role of the TbD1 locus by exploring its function in M. bovis. Toward this, we constructed an M. bovis TbD1 knockout (ΔTbD1) strain and conducted comparative transcriptomics to define global gene expression profiles of M. bovis wild-type (WT) and the ΔTbD1 strains under in vitro culture conditions (rolling and standing cultures). This analysis revealed differential induction of a hypoxia-driven copper response in WT and ΔTbD1 strains. In vitro phenotypic assays demonstrated that the deletion of TbD1 sensitized M. bovis to H2O2 and hypoxia-specific copper toxicity. Our study provides new information on the function of the TbD1 locus in M. bovis and its role in stress responses in the MTBC.
Collapse
Affiliation(s)
- Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gabriel Gonzalez
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - John A. Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Chie Nakajima
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Stephen V. Gordon,
| |
Collapse
|
12
|
Quintela-Carvalho G, Goicochea AMC, Mançur-Santos V, Viana SDM, Luz YDS, Dias BRS, Lázaro-Souza M, Suarez M, de Oliveira CI, Saraiva EM, Brodskyn CI, Veras PT, de Menezes JP, Andrade BB, Lima JB, Descoteaux A, Borges VM. Leishmania infantum Defective in Lipophosphoglycan Biosynthesis Interferes With Activation of Human Neutrophils. Front Cell Infect Microbiol 2022; 12:788196. [PMID: 35463648 PMCID: PMC9019130 DOI: 10.3389/fcimb.2022.788196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite–vector–host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Alagoinhas, Brazil
| | - Astrid Madeleine Calero Goicochea
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vanessa Mançur-Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Sayonara de Melo Viana
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Yasmin da Silva Luz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Beatriz Rocha Simões Dias
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Milena Lázaro-Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Martha Suarez
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila Indiani de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Elvira M. Saraiva
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia I. Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Patrícia T. Veras
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Juliana P.B. de Menezes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Jonilson Berlink Lima
- Núcleo de Agentes Infecciosos e Vetores (NAIVE), Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique (INRS)–Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| | - Valéria M. Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| |
Collapse
|