1
|
Mojgani N, Bagheri M, Ashique S, Islam A, Moharrami M, Modirrousta H, Hussain A. Honeybee defense mechanisms: Role of honeybee gut microbiota and antimicrobial peptides in maintaining colony health and preventing diseases. Microb Pathog 2025; 198:107161. [PMID: 39603566 DOI: 10.1016/j.micpath.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Honeybees play a vital role in pollination and the maintenance of ecosystem biodiversity, making their health and well-being crucial for agriculture and environmental sustainability. Bee health is modulated by symbiotic microorganisms colonizing the gut in balanced proportions. Studies have demonstrated that these beneficial bacteria have the capacity to enhance the immune system of honey bees, having substantial impact on regulating their immunological responses and hence aiding in defending against pathogenic illnesses. Another important aspect of honeybee health is their innate immune system that is related to their ability to synthesize antimicrobial peptides (AMP). AMPs, the small, cationic peptides are the humoral effector molecules that are synthesized in the hemolymph of the insects after being exposed to microbial infectious agents. A number of honeybee's gut microbiota especially Lactic Acid Bacteria (LAB), are known to regulate the production of several AMPs and hence are able to provide protection to these insects against a number of disease agents by modulating their innate immune response via induction of the AMPs genes. These AMPs mainly produced by adult workers are an important and integral part of an insect's immune response. Several AMPs namely apidaecins, abaecins, hymenoptaecins and defensins produced in the adult honeybee, hold the ability to control or prevent a number of diseases in these pollinator insects.
Collapse
Affiliation(s)
- Naheed Mojgani
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mojtaba Moharrami
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hossein Modirrousta
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abrar Hussain
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Avanzi Q, Lisart L, Detrain C. Social organization of necrophoresis: insights into disease risk management in ant societies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240764. [PMID: 39665101 PMCID: PMC11632371 DOI: 10.1098/rsos.240764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Abstract
Insect societies, which are at a high risk of disease outbreaks, have evolved sanitary strategies that contribute to their social immunity. Here, we investigated in the red ant Myrmica rubra, how the discarding of nestmate cadavers is socially organized depending on the associated pathogenicity. We examined whether necrophoresis is carried out by a specific functional group of workers or by any nestmates that may become short-term specialists. By observing the behavioural profiles of tagged individuals, we assigned half of the colony members to functional groups (foragers, intermittent-foragers, domestics, nurses and inactives). Following the introduction of uninfected or sporulating corpses into the nest, intermittent-foragers were the functional group most involved in necrophoresis, as they touched, moved and discarded more cadavers. Interestingly, sporulating corpses induced a more generalized response in workers from all functional groups, thereby accelerating their rejection from the nest. The individuals contacting corpses were also prophylactically engaged in more grooming behaviour, suggesting the existence of hygienist workers within ant colonies. These findings raise questions about a trade-off existing between concentrating health risks on a few workers who are highly specialized in necrophoresis and exposing a larger population of nestmates who cooperate to speed up nest sanitization.
Collapse
Affiliation(s)
- Quentin Avanzi
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Léon Lisart
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
de Oliveira Barbosa Bitencourt R, Azevedo Santos H, Salcedo-Porras N, Lowenberger C, Alves de Senne N, Silva Gôlo P, Rita Elias Pinheiro Bittencourt V, da Costa Angelo I. Multigenerational expression of antimicrobial peptides in Aedes aegypti exposed to Metarhizium anisopliae: Is trans-generational immune priming involved? JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104712. [PMID: 39307233 DOI: 10.1016/j.jinsphys.2024.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
We assessed, for the first time, a multigenerational expression of antimicrobial peptides (AMPs) in Aedes aegypti larvae exposed to the entomopathogenic fungus, Metarhizium anisopliae, and correlated it with a possible involvement in trans-generational immune priming (TGIP). Aedes aegypti larvae were first exposed to blastospores or conidia of M. anisopliae CG 489 for 24 and 48 h, and the relative expression of AMPs were measured using quantitative Real-Time PCR. A suspension of conidia was prepared, and two different survival tests were conducted with different larval generations (F0, F1, and F2). In the first bioassay, the survival curves of the three generations were conducted separately and compared with their respective control groups. In the other bioassay, the survival curves of the F0, F1, and F2 generations were compared simultaneously against a naïve group exposed to Tween 80. In both survival tests, the F0 generation was more susceptible to M. anisopliae than subsequent generations. For molecular analyses related to TGIP, F0, F1, and F2 larvae were exposed to conidia, and their expression of AMPs was compared with their control groups and a naïve group. There was no differential expression of cecropin, defensin A or cathepsin B between generations. Lysozyme C, however, showed an increase in expression across generations, suggesting a role in TGIP. These discoveries may help us develop biological insecticides against mosquito larvae based on entomopathogenic fungi.
Collapse
Affiliation(s)
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Nicolas Salcedo-Porras
- 350 Health Sciences Mall, Life Sciences Institute. University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Nathália Alves de Senne
- Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Patrícia Silva Gôlo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
4
|
Li P, Zhang H, Tan A, Hu Z, Peng L, Hou Y. Spätzle Regulates Developmental and Immune Trade-Offs Induced by Bacillus thuringiensis Priming in Rhynchophorus ferrugineus. INSECTS 2024; 15:925. [PMID: 39769527 PMCID: PMC11677516 DOI: 10.3390/insects15120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling pathways have not yet been reported. Here, we investigated the effect of Bt priming on RPW development and subsequently analyzed the hormonal and immune-related molecular pathways influencing the fitness cost induced by Bt priming. Bt priming delayed the body weight gain of fifth-instar larvae and prolonged their developmental duration. Bt priming significantly reduced the 20-hydroxyecdysone (20E) content in RPW hemolymph, and the expression levels of the 20E biosynthesis-related genes SHADOW and SHADE were significantly downregulated. Furthermore, we analyzed Toll pathway genes influencing Bt priming and found that only Spätzle (SPZ) transcription was significantly activated under Bt priming. After silencing SPZ expression, the negative effects of Bt priming on development, SHADOW expression, and 20E synthesis were eliminated, thereby suggesting that SPZ is a key molecular signal mediating developmental and immune trade-offs induced by Bt priming. Our results elucidate the molecular cascade pathway of immune priming and provide new targets for improving the efficiency of RPW biological controls.
Collapse
Affiliation(s)
- Pengju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anran Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuolin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Luigia Vommaro M, Korša A, Sofia Lindeza A, Giglio A, Kurtz J. The combined effect of herbicide and Bacillus thuringiensis exposure delays development in the red flour beetle. J Invertebr Pathol 2024; 207:108227. [PMID: 39477143 DOI: 10.1016/j.jip.2024.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
The use of herbicides and their long persistence in the environment have raised concerns about potential harm to ecosystems and human health. However, there is a gap in the knowledge regarding the effects of continuous exposure to residues or admitted field doses on non-target organisms such as insects that inhabit croplands and play key ecological roles. Furthermore, the potential impact of this exposure on host-pathogen interactions remains largely unstudied. This study adopted an eco-immunological perspective, investigating the influence of herbicides on an organism's interaction with natural pathogens. The impact of this combination of multiple stressors was studied in larvae of the red flour beetle, Tribolium castaneum Herbst, 1797, previously treated with a pendimethalin-based commercial formulation (PND) and exposed to the natural entomopathogen Bacillus thuringiensis (1x109, 1x1010 cells/mL). The effects of three PND concentrations (i.e. a recommended field rate, a soil contaminant concentration and the maximum residue limit admitted in grain in EU countries: 4L/ha, 13 and 0.05 ppm, respectively) on life history traits such as developmental time, pupation rate and survival rate and the expression levels of antimicrobial peptides (AMPs) were assessed. The results showed that even at doses considered safe for human consumption or field application, exposure to PND had an impact on beetle larvae, affecting their vulnerability to B. thuringiensis. The combined experience of exposure to PND and B. thuringiensis at the larval stage resulted in a delay of larval development, a reduction in the number of pupae and emerging adults, and alterations in their body condition. Moreover, changes in the expression levels of the analysed AMPs, including Attacin 1, Defensin 2 and Coleoptericin 2, were recorded as markers for immune activity against the bacterium. The findings of this study highlight the general need for further studies on the effects of commonly used herbicides on the physiology of non-target organisms and on host-pathogen interactions at the community level. Additionally, there is a need for the establishment of revised residual levels that are deemed non-toxic to soil organisms and humans.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Korša
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Sofia Lindeza
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Polenogova OV, Kryukova NA, Klementeva T, Artemchenko AS, Lukin AD, Khodyrev VP, Slepneva I, Vorontsova Y, Glupov VV. The influence of inactivated entomopathogenic bacterium Bacillus thuringiensis on the immune responses of the Colorado potato beetle. PeerJ 2024; 12:e18259. [PMID: 39494291 PMCID: PMC11531747 DOI: 10.7717/peerj.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Invasion of microorganisms into the gut of insects triggers a cascade of immune reactions accompanied by increased synthesis of effectors (such as antimicrobial peptides, cytokines, and amino acids), leading to changes in the physiological state of the host. We hypothesized that even an inactivated bacterium can induce an immune response in an insect. The aim of this study was to compare the roles of reactive oxygen species (ROS) formation and of the response of detoxification and antioxidant systems in a Colorado potato beetle (CPB) larval model in the first hours after invasion by either an inactivated or live bacterium. Methods The influence of per os inoculation with inactivated entomopathogenic bacterium Bacillus thuringiensis var. tenebrionis (Bt) on the survival and physiological and biochemical parameters of CPB larvae was assessed as changes in the total hemocyte count (THC), activity of phenoloxidases (POs), glutathione-S-transferases (GSTs), nonspecific esterases (ESTs), catalase, peroxidases, superoxide dismutases (SODs) and formation of reactive oxygen species (ROS). Results A series of changes occurred within the hemolymph and the midgut of CPBs inoculated with inactivated Bt at 12 h after inoculation. These physiological and biochemical alterations serve to mediate generalized resistance to pathogens. The changes were associated with an increase in the THC and a 1.4-2.2-fold enhancement of detoxification enzymatic activities (such as GST and EST) as well as increased levels of antioxidants (especially peroxidases) in hemolymph in comparison to the control group. Suppressed EST activity and reduced ROS formation were simultaneously detectable in the larval midgut. Inoculation of beetle larvae with active Bt cells yielded similar results (elevated THC and suppressed PO activity). A fundamental difference in the immune activation processes between larvae that ingested the inactivated bacterium and larvae that had consumed the active bacterium was that the inactivated bacterium did not influence ROS formation in the hemolymph but did reduce their formation in the midgut. At 24 h postinfection with active Bt, ROS levels went up in both the hemolymph and the midgut. This was accompanied by a significant 5.7-fold enhancement of SOD activity and a 5.3-fold suppression of peroxidase activity. The observed alterations may be due to within-gut toxicity caused by early-stage bacteriosis. The imbalance in the antioxidant system and the accumulation of products toxic to the "putative" pathogen can activate detoxification mechanisms, including those of an enzymatic nature (EST and GST). The activation of detoxification processes and of innate immune responses is probably due to the recognition of the "putative" pathogen by gut epithelial cells and is similar in many respects to the immune response at early stages of bacteriosis.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A. Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna S. Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Viktor P. Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yana Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Effect of Benzyl Alcohol on Main Defense System Components of Galleria mellonella (Lepidoptera). Int J Mol Sci 2024; 25:11209. [PMID: 39456990 PMCID: PMC11508370 DOI: 10.3390/ijms252011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Benzyl alcohol (E1519) is an aromatic alcohol used in the pharmaceutical and food industry. It is used to protect food products against microorganisms during storage, as a flavoring in the production of chocolate and confectionery products, as an important ingredient in fragrance, and as a preservative in medical products. However, little is known of its effect on insects. The main aim of this study was to determine the influence of benzyl alcohol on the defense systems of the wax moth Galleria mellonella, i.e., its cuticular lipid composition and critical elements of its immune system. A gas chromatography/mass spectrometry (GC/MS) analysis found benzyl alcohol treatment to elicit significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles. Our findings indicate that benzyl alcohol treatment increased the levels of HSP70 and HSP90 and decreased those of HSF1, histamine, and cysteinyl leukotriene. Benzyl alcohol application also increased dismutase level in the hemolymph and lowered those of catalase and 8-OHdG. The treatment also had negative effects on G. mellonella hemocytes and a Sf9 cell line in vitro: 48-h treatment resulted in morphological changes, with the remaining cells being clearly spindle-shaped with numerous granules. The high insecticidal activity of compound and its lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warszawa, Poland;
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Anna K. Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland
| |
Collapse
|
8
|
Arfatahery N, Rafaluk C, Rolff J, Wegner KM. Evidence for immune priming specificity and cross-protection against sympatric and allopatric Vibrio splendidus strains in the oyster Magalana (Crassostrea) gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105221. [PMID: 38925430 DOI: 10.1016/j.dci.2024.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection. There is increasing experimental evidence of immune priming in invertebrates, where previous exposure to a low pathogen load boosts the immune response upon secondary exposure. Priming responses, however, appear to vary in their specificity across host and parasite taxa. To test priming specificity in the Vibrio - M. gigas system, we used two closely related Vibrio splendidus strains with differing degrees of virulence towards M. gigas. These V. splendidus strains were either isolated in the same location as the oysters (sympatric, opening up the potential for co-evolution) or in a different location (allopatric). We extracted cell-free haemolymph plasma from infected and control oysters to test the influence of humoral immune effectors on bacterial growth in vitro. While addition of haemolypmph plasma in general promoted growth of both strains, priming by an exposure to a sublethal dose of bacterial cells lead to inhibitory effects against a subsequent challenge with a potentially lethal dose in vitro. Inhibitory effects and immune priming was strongest when oysters had been primed with the sympatric Vibrio strain, but inhibitory effects were seen both when challenged with the sympatric as well as against allopatric V. splendidus, suggesting some degree of cross protection. The stronger immune priming against the sympatric strain suggests that priming could be more efficient against matching local strains potentially adding a component of local adaptation or co-evolution to immune priming in oysters. These in vitro results, however, were not reflected in the in vivo infection data, where we saw increased bacterial loads following an initial challenge. This discrepancy might suggests that that it is the humoral part of the oyster immune system that produces the priming effects seen in our in vitro experiments.
Collapse
Affiliation(s)
- Noushin Arfatahery
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
| | - Charlotte Rafaluk
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.
| | - Jens Rolff
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
| | | |
Collapse
|
9
|
Van Herzele C, Coppens S, Vereecke N, Theuns S, de Graaf DC, Nauwynck H. New insights into honey bee viral and bacterial seasonal infection patterns using third-generation nanopore sequencing on honey bee haemolymph. Vet Res 2024; 55:118. [PMID: 39334245 PMCID: PMC11430211 DOI: 10.1186/s13567-024-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/21/2024] [Indexed: 09/30/2024] Open
Abstract
Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutritional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to monitor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacterial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast was observed between young and old bees. Our research proposes that transgenerational immune priming may play a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health and decrease colony mortality.
Collapse
Affiliation(s)
- Cato Van Herzele
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | | | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
- PathoSense BV, Pastoriestraat 10, 2500, Lier, Belgium
| | | | - Dirk C de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Brahma S, Chatterjee S, Dey A. Role of eicosanoids in insect immunity: new insights and recent advances. INSECT SCIENCE 2024. [PMID: 39158024 DOI: 10.1111/1744-7917.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Viruses, bacteria, fungus, protozoans, and different metazoan parasites and parasitoids present a constant threat to insects. Insect immunity has two components: humoral and cell mediated. Humoral immunity can be achieved by various antimicrobial proteins, namely, cecropins, sarcotoxin, defensin, attacin, etc. The cell-mediated immunity comprises various cells having immune functions fostering nodulation, phagocytosis, microaggregation, encapsulation etc. Eicosanoids play a crucial role in insect immunity comparable to other animals. The above-mentioned are signaling molecules derived from polyunsaturated fatty acids and they exert numerous physiological effects, namely, inflammation, immune modulation, and regulation of cellular processes. The review article elucidates various roles of eicosanoids, namely, nodulation reaction, Toll signaling pathway, nitric oxide (NO) generation, Ca2+ mobilization, production of reactive oxygen species (ROS), actin polymerization and aquaporin activation. Eicosanoids can function in immune priming in insects drawing hemocytes. An agent named Duox was also identified serving as ROS generator in insect gut. Moreover, role of Repat gene in insect immunity was also studied. However, recently the role of prostacyclin (PGI2) was found to be negative as it inhibits platelet aggregation. In this brief review, we have tried to shed light on the various functions of eicosanoids in immunity of insect those have been discovered recently. This concise study will allow to decipher eicosanoids' function in insect immunity in a nutshell, and it will pave the way for more researches to understand the key players of insect immunity which may eventually help to develop novel vector and pest control strategies in near future.
Collapse
Affiliation(s)
- Shubhranil Brahma
- Department of Zoology, Iswar Chandra Vidyasagar College, Belonia, South Tripura, Tripura, India
| | - Somnath Chatterjee
- Department of Zoology, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Hatgobindapur, Purba Bardhaman, West Bengal, India
| | - Atrayee Dey
- Post Graduate Department of Zoology, Banwarilal Bhalotia College, Asansol, Paschim Bardhaman, West Bengal, India
| |
Collapse
|
11
|
Liu Q, Deng X, Wang L, Xie W, Zhang H, Li Q, Yang Q, Jiang C. Chlorantraniliprole Enhances Cellular Immunity in Larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). INSECTS 2024; 15:586. [PMID: 39194791 DOI: 10.3390/insects15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The innate immunity of insects encompasses cellular and humoral defense mechanisms and constitutes the primary defense against invading microbial pathogens. Cellular immunity (phagocytosis, nodulation, and encapsulation) is primarily mediated by hemocytes. Plasmatocytes and granulocytes play an important role and require changes in the cytoskeletons of hemocytes. However, research investigating the immunological impacts of insecticides on the fall armyworm (FAW), Spodoptera frugiperda, remains scarce. Therefore, we conducted a study to investigate the effects of chlorantraniliprole exposure on cellular immunity in FAW larvae. Our findings revealed the presence of five types of hemocytes in the larvae: prohemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. The LD10, LD20, and LD30 of chlorantraniliprole affected both the morphology and total count of some hemocytes in the larvae. Moreover, larvae exposed to chlorantraniliprole showed increased phagocytosis, nodulation, and encapsulation. To determine the mechanism of the enhanced cellular immunity, we studied plasmatocytes in the spread state and the cytoskeleton in hemocytes. It was found that the spreading ratio of plasmatocytes and the areas of the cytoskeletons in hemocytes were increased after chlorantraniliprole treatment. These results suggest that exposure to chlorantraniliprole results in an enhanced immune response function in FAW larvae, which may be mediated by cytoskeletal changes and plasmatocyte spreading. Consequently, this study provides valuable insights into the cellular immune response of FAW larvae to insecticide exposure.
Collapse
Affiliation(s)
- Qingyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyue Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Emeishan Agricultural and Rural Bureau, Emeishan 614200, China
| | - Liuhong Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqi Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huilai Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunfang Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Li Z, Ouyang L, Lu Y, Peng Q, Qiao X, Wu Q, Zhang B, Liu B, Wan F, Qian W. Antibiotics suppress the expression of antimicrobial peptides and increase sensitivity of Cydia pomonella to granulosis virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174612. [PMID: 38992382 DOI: 10.1016/j.scitotenv.2024.174612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.
Collapse
Affiliation(s)
- Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Lan Ouyang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yin Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute, Henan University, Shenzhen 518000, China.
| | - Qi Peng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
13
|
González-Morales JC, Rivera-Rea J, Moreno-Rueda G, Plasman M, Quintana E, Bastiaans E. Seasonal and altitudinal variation in dorsal skin reflectance and thermic rates in a high-altitude montane lizard. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1421-1435. [PMID: 38652160 DOI: 10.1007/s00484-024-02677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Temperature is one of the most important factors in the life histories of ectotherms, as body temperature has an undeniable effect on growth, activity, and reproduction. Lizards have a wide variety of strategies to acquire and maintain body temperature in an optimal range. The "Thermal Melanism Hypothesis" proposes that individuals with lower skin reflectance can heat up faster as a result of absorbing more solar radiation compared to lighter conspecifics. Therefore, having a darker coloration might be advantageous in cold habitats. Dorsal skin reflectance has been found to change rapidly with body temperature in several lizard species, and it can also vary over longer, seasonal time scales. These variations may be important in thermoregulation, especially in lizards that inhabit areas with a large temperature variation during the year. Here, we study how dorsal reflectance fluctuates with body temperature and varies among seasons. We compared dorsal skin reflectance at three body temperature treatments, and measured thermal rates (i.e., heat and cool rate, thermic lapse, and net heat gain) by elevation (2500-4100 m) and seasons (spring, summer, and autumn) in the mesquite lizard, Sceloporus grammicus. Our results show that lizards were darker at high elevations and during the months with the lowest environmental temperatures. The rate of obtaining and retaining heat also varied during the year and was highest during the reproductive season. Our results indicate that the variation of dorsal skin reflectance and thermal rates follows a complex pattern in lizard populations and is affected by both elevation and season.
Collapse
Affiliation(s)
- J Carlos González-Morales
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México.
| | - Jimena Rivera-Rea
- Doctorado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, Estado de México, CP 50000, México
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, Granda, E-18071, España
| | - Melissa Plasman
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Erendira Quintana
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México
| | - Elizabeth Bastiaans
- Biology Departament, State University of New York at Oneonta, 108 Ravine Parkway, Oneonta, NY, 13820, USA
| |
Collapse
|
14
|
Genç TT, Kaya S, Günay M, Çakaloğlu Ç. Humoral immune response of Galleria mellonella after mono- and co-injection with Hypericum perforatum extract and Candida albicans. APMIS 2024; 132:358-370. [PMID: 38344892 DOI: 10.1111/apm.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
Galleria mellonella is used as a model organism to study the innate immune response of insects. In this study, the humoral immune response was assessed by examining phenoloxidase activity, fungal burden, and the expression of phenoloxidase and antimicrobial peptide genes at different time point following separate and combined injections of Hypericum perforatum extract and a nonlethal dose of Candida albicans. The administration of a plant extract at low doses increased phenoloxidase activity, while higher doses had no effect. Similarly, co-injection of a low dose of the extract with the pathogen allowed half of the yeast cells to survive after 24 h. Co-injection of plant extract with the pathogen decreased the phenoloxidase activity at the end of 4 h compared to C. albicans mono-injection. The phenoloxidase gene expressions was reduced in all experimental conditions with respect to the control. When plant extracts and the pathogen were administered together, gallerimycin and hemolin gene expressions were considerably higher compared to mono-injections of plant extracts and the pathogen. The results of this study reveal that gene activation and regulatory mechanisms may change for each immune gene, and that recognition and signaling pathways may differ depending on the involved immunoregulator.
Collapse
Affiliation(s)
- Tülay Turgut Genç
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serhat Kaya
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Melih Günay
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Çağla Çakaloğlu
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
15
|
Hafeez M, Mc Donnell R, Colton A, Howe D, Denver D, Martin RC, Choi MY. Immune-Related Gene Profiles and Differential Expression in the Grey Garden Slug Deroceras reticulatum Infected with the Parasitic Nematode Phasmarhabditis hermaphrodita. INSECTS 2024; 15:311. [PMID: 38786867 PMCID: PMC11122010 DOI: 10.3390/insects15050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The grey garden slug (Deroceras reticulatum), a common terrestrial slug native to Europe with a global distribution including North America, is commonly considered the most severe slug pest in agriculture. The nematode Phasmarhabditis hermaphrodita, which has been used in the U.K. and Europe as a commercial biocontrol agent since 1994, has also recently been collected in Oregon and California and has long been considered a candidate biocontrol agent for slug management in the U.S. In this study, we report differential gene expressions in nematode-infected slugs using RNA-seq to identify slug immune-related genes against nematodes. Comparison of gene expression levels between the whole bodies of a nematode-infected slug (N-S) and an uninfected control slug (C-S) revealed that there were a total of 39,380 regulated unigenes, of which 3084 (3%) were upregulated and 6761 (6%) were downregulated at greater than 2-fold change (FC > 2) in the nematode-infected slug. To further investigate the biological functions of differentially expressed genes (DEGs), gene ontology (GO) and functional enrichment analysis were performed to map the DEGs to terms in the GO, eukaryotic ortholog groups of proteins (KOG) and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) databases. Among these DEGs, approximately 228 genes associated with immunity or immune-related pathways were upregulated 2-fold or more in the N-S compared to C-S. These genes include toll, Imd, JNK, scavenger receptors (SCRs), C-type lectins (CTLs), immunoglobulin-like domains, and JAK/STAT63 signaling pathways. From the RNA-seq results, we selected 18 genes and confirmed their expression levels by qRT-PCR. Our findings provide insights into the immune response of slugs during nematode infection. These studies provide fundamental information that will be valuable for the development of new methods of pest slug control using pathogenic nematodes in the field.
Collapse
Affiliation(s)
- Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, USA;
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA;
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA; (R.M.D.); (A.C.)
| | - Andrew Colton
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA; (R.M.D.); (A.C.)
| | - Dana Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.H.); (D.D.)
| | - Dee Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.H.); (D.D.)
| | - Ruth C. Martin
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA;
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, USA;
| |
Collapse
|
16
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
17
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
18
|
Jang S, Ishigami K, Mergaert P, Kikuchi Y. Ingested soil bacteria breach gut epithelia and prime systemic immunity in an insect. Proc Natl Acad Sci U S A 2024; 121:e2315540121. [PMID: 38437561 PMCID: PMC10945853 DOI: 10.1073/pnas.2315540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024] Open
Abstract
Insects lack acquired immunity and were thought to have no immune memory, but recent studies reported a phenomenon called immune priming, wherein sublethal dose of pathogens or nonpathogenic microbes stimulates immunity and prevents subsequential pathogen infection. Although the evidence for insect immune priming is accumulating, the underlying mechanisms are still unclear. The bean bug Riptortus pedestris acquires its gut microbiota from ambient soil and spatially structures them into a multispecies and variable community in the anterior midgut and a specific, monospecies Caballeronia symbiont population in the posterior region. We demonstrate that a particular Burkholderia strain colonizing the anterior midgut stimulates systemic immunity by penetrating gut epithelia and migrating into the hemolymph. The activated immunity, consisting of a humoral and a cellular response, had no negative effect on the host fitness, but on the contrary protected the insect from subsequent infection by pathogenic bacteria. Interruption of contact between the Burkholderia strain and epithelia of the gut weakened the host immunity back to preinfection levels and made the insects more vulnerable to microbial infection, demonstrating that persistent acquisition of environmental bacteria is important to maintain an efficient immunity.
Collapse
Affiliation(s)
- Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198Gif-sur-Yvette, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| |
Collapse
|
19
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
20
|
Lanz-Mendoza H, Gálvez D, Contreras-Garduño J. The plasticity of immune memory in invertebrates. J Exp Biol 2024; 227:jeb246158. [PMID: 38449328 DOI: 10.1242/jeb.246158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Whether specific immune protection after initial pathogen exposure (immune memory) occurs in invertebrates has long been uncertain. The absence of antibodies, B-cells and T-cells, and the short lifespans of invertebrates led to the hypothesis that immune memory does not occur in these organisms. However, research in the past two decades has supported the existence of immune memory in several invertebrate groups, including Ctenophora, Cnidaria, Nematoda, Mollusca and Arthropoda. Interestingly, some studies have demonstrated immune memory that is specific to the parasite strain. Nonetheless, other work does not provide support for immune memory in invertebrates or offers only partial support. Moreover, the expected biphasic immune response, a characteristic of adaptive immune memory in vertebrates, varies within and between invertebrate species. This variation may be attributed to the influence of biotic or abiotic factors, particularly parasites, on the outcome of immune memory. Despite its critical importance for survival, the role of phenotypic plasticity in immune memory has not been systematically examined in the past two decades. Additionally, the features of immune responses occurring in diverse environments have yet to be fully characterized.
Collapse
Affiliation(s)
- Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, INSP, 62100 Cuernavaca, Morelos, Mexico
| | - Dumas Gálvez
- Coiba Scientific Station, City of Knowledge, Calle Gustavo Lara, Boulevard 145B, Clayton 0843-01853, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Estafeta universitaria, Avenida Simón Bolívar, 0824, Panama
- Sistema Nacional de Investigación, Edificio 205, Ciudad del Saber, 0816-02852, Panama
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, UNAM, 58190 Morelia, Mexico
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
21
|
Lin S, Li XW, Liu JL, Ou-Yang YY, Zhang B, Zhao SJ, Chai XQ, Ma YL, Liu J. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. PEST MANAGEMENT SCIENCE 2024; 80:1193-1205. [PMID: 37888855 DOI: 10.1002/ps.7849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Wen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian-Li Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yu-Ying Ou-Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shu-Jiao Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Qing Chai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yong-le Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian Liu
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Orange, Australia
| |
Collapse
|
22
|
Zhou L, Dang Z, Wang S, Li S, Zou Y, Zhao P, Xia Q, Lu Z. Transcription factor STAT enhanced antimicrobial activities in Bombyx mori. Int J Biol Macromol 2024; 254:127637. [PMID: 37898240 DOI: 10.1016/j.ijbiomac.2023.127637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
STAT, a transcription factor in the JAK/STAT signaling pathway, regulates immune response to pathogens. In the silkworm (Bombyx mori), STAT exists as two split-forms, STAT-S and STAT-L. However, the role of STAT in silkworm immunity remains unclear. Our purpose was to investigate the effect of STAT on the expression of antimicrobial peptide (AMP) genes and resistance against pathogens. The expression levels of STAT-S and STAT-L were significantly up-regulated after induction by pathogenic microorganisms. In BmE cells, lipopolysaccharide (LPS), peptidoglycan (PGN) and β-glucan stimulated STAT-S and STAT-L to transfer from the cytoplasm to the nucleus. We found that overexpression of STAT-S and STAT-L in cells could promote the expression of AMPs. We generated transgenic silkworm lines overexpressing STAT-L or STAT-S (OE-STAT-S; OE-STAT-L) or interfering with STAT (A4-dsSTAT). Overexpression of STAT-S and STAT-L upregulated the expression of AMP genes in the OE-STAT-S and OE-STAT-L, increased the survival rates of the OE-STAT-S silkworms and lowered the mortality of OE-STAT-L silkworms infected with S. aureus or Beauveria bassiana. By contrast, the death rate of A4-dsSTAT silkworms was higher after infection with these pathogenic microorganisms. These findings may provide insights into the role of STAT in the antimicrobial immune response of silkworms.
Collapse
Affiliation(s)
- Li Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Zhuo Dang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Shiyuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Shuyu Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Yan Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China
| | - Zhongyan Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
23
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
24
|
Länger ZM, Baur M, Korša A, Eirich J, Lindeza AS, Zanchi C, Finkemeier I, Kurtz J. Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle. Biol Lett 2023; 19:20230322. [PMID: 37909056 PMCID: PMC10618857 DOI: 10.1098/rsbl.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Most organisms are host to symbionts and pathogens, which led to the evolution of immune strategies to prevent harm. Whilst the immune defences of vertebrates are classically divided into innate and adaptive, insects lack specialized cells involved in adaptive immunity, but have been shown to exhibit immune priming: the enhanced survival upon infection after a first exposure to the same pathogen or pathogen-derived components. An important piece of the puzzle are the pathogen-associated molecules that induce these immune priming responses. Here, we make use of the model system consisting of the red flour beetle (Tribolium castaneum) and its bacterial pathogen Bacillus thuringiensis, to compare the proteomes of culture supernatants of two closely related B. thuringiensis strains that either induce priming via the oral route, or not. Among the proteins that might be immunostimulatory to T. castaneum, we identify the Cry3Aa toxin, an important plasmid-encoded virulence factor of B. thuringiensis. In further priming-infection assays we test the relevance of Cry-carrying plasmids for immune priming. Our findings provide valuable insights for future studies to perform experiments on the mechanisms and evolution of immune priming.
Collapse
Affiliation(s)
- Zoe Marie Länger
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Moritz Baur
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Ana Korša
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Ana Sofia Lindeza
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Caroline Zanchi
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| |
Collapse
|
25
|
Rittschof CC, Denny AS. The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integr Comp Biol 2023; 63:808-824. [PMID: 36881719 DOI: 10.1093/icb/icad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Across diverse animal species, early-life experiences have lifelong impacts on a variety of traits. The scope of these impacts, their implications, and the mechanisms that drive these effects are central research foci for a variety of disciplines in biology, from ecology and evolution to molecular biology and neuroscience. Here, we review the role of early life in shaping adult phenotypes and fitness in bees, emphasizing the possibility that bees are ideal species to investigate variation in early-life experience and its consequences at both individual and population levels. Bee early life includes the larval and pupal stages, critical time periods during which factors like food availability, maternal care, and temperature set the phenotypic trajectory for an individual's lifetime. We discuss how some common traits impacted by these experiences, including development rate and adult body size, influence fitness at the individual level, with possible ramifications at the population level. Finally, we review ways in which human alterations to the landscape may impact bee populations through early-life effects. This review highlights aspects of bees' natural history and behavioral ecology that warrant further investigation with the goal of understanding how environmental disturbances threaten these vulnerable species.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| | - Amanda S Denny
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| |
Collapse
|
26
|
Steele T, Singer RD, Bjørnson S. Alkaloid content in microsporidia-infected Adalia bipunctata (Coleoptera: Coccinellidae) life stages, and pathogen spore load in adults after exposure to physical stress. J Invertebr Pathol 2023; 200:107969. [PMID: 37423339 DOI: 10.1016/j.jip.2023.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The two-spotted lady beetle, Adalia bipunctata L., displays warning colouration that is reinforced by the production of adaline and adalinine. These alkaloids are thought to provide defense against predation throughout all life stages of A. bipunctata and may play a role in the insect immune system. Vairimorpha (Nosema) adaliae, a microsporidium described from A. bipunctata, has minimal effects on its host (delayed larval development) when reared under optimum conditions but stress factors are shown to affect the development of microsporidiosis. The objectives of this study were to determine the effects of V. adaliae on relative alkaloid content (adaline) during A. bipunctata development, and to evaluate the combined effects of physical stress and infection on adult beetles (relative alkaloid content and infection load). First-instar larvae were isolated from uninfected and V. adaliae-infected colonies. Eggs and first-instar larvae were immediately prepared for alkaloid analysis, whereas late-instar larvae, pupae and adults were systematically processed when each reached their designated developmental stage. Upon eclosion, a subsample of beetles was exposed to varying amounts of physical agitation: control (no shaking), alternate shaking (every other day), and daily shaking. Immediately following these stress trials, alkaloid samples were collected for analysis and spore loads were assessed. Overall, relative adaline proportions increased from egg to adult. Uninfected individuals had significantly higher relative proportions of adaline than did infected individuals during early development; however, adaline content was higher in infected A. bipunctata from the third-instar onwards, when compared to their uninfected counterparts. Following exposure to physical agitation on alternate days, uninfected adults had a significantly higher relative proportion of adaline than did infected adults. Interestingly, exposure to different levels of agitation had no significant effect on alkaloid production for either uninfected or infected beetles. Mean spore counts were significantly higher for adults that were exposed to daily shaking when compared to individuals from the control and alternate shaking groups. From a biological perspective, one would expect to observe differences in alkaloid production through coccinellid development, as each successive life stage faces different external pressures and risks. When infected with the microsporidium V. adaliae, however, adaline production was reduced during early development but increased significantly in late life stages.
Collapse
Affiliation(s)
- T Steele
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - R D Singer
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - S Bjørnson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
27
|
Li J, Mao Y, Yi J, Lin M, Xu H, Cheng Y, Wu H, Liu J. Induced expression modes of genes related to Toll, Imd, and JAK/STAT signaling pathway-mediated immune response in Spodoptera frugiperda infected with Beauveria bassiana. Front Physiol 2023; 14:1249662. [PMID: 37693000 PMCID: PMC10484109 DOI: 10.3389/fphys.2023.1249662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Spodoptera frugiperda is one of the most harmful pests that attack maize and other major food crops and causes huge economic loss every year in China and other countries and regions. Beauveria bassiana, a kind of entomological fungus that is highly pathogenic to pests, is harmless to the environment and human beings. However, at present, S. frugiperda has gradually developed resistance to many pesticides and microbial insecticides. In this study, transcriptome sequencing was conducted to analyze the differences in gene expression between B. bassiana-infected and -uninfected S. frugiperda. More than 160 Gb of clean data were obtained as 150-bp paired-end reads using the Illumina HiSeq™ 4000 platform, and 2,767 and 2,892 DEGs were identified in LH36vsCK36 and LH144vsCK144, respectively. In order to explore the roles of JAK/STAT, Toll, and Imd signaling pathways in antifungal immune response in S. frugiperda against B. bassiana infection, the expression patterns of those signaling pathway-related genes in B. bassiana-infected S. frugiperda were analyzed by quantitative real-time PCR. In addition, antifungal activity experiments revealed that the suppression of JAK/STAT, Toll, and Imd signaling pathways by inhibitors could inhibit the antifungal activity to a large extent and lead to increased sensitivity of S. frugiperda to B. bassiana infection, indicating that JAK/STAT, Toll, and Imd signaling pathways and their associated genes might be involved in the synthesis and secretion of antifungal substances. This study implied that JAK/STAT, Toll, and Imd signaling pathways played crucial roles in the antifungal immune response of the S. frugiperda larvae, in which the related genes of these signaling pathways could play special regulatory roles in signal transduction. This study would improve our understanding of the molecular mechanisms underlying innate immunity and provide the basis for a wide spectrum of strategies against antifungal resistance of S. frugiperda.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianbai Liu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecol Evol 2023; 23:37. [PMID: 37550612 PMCID: PMC10405452 DOI: 10.1186/s12862-023-02137-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Fighting disease while fighting rivals exposes males to constraints and trade-offs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfere with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony's worker force. RESULTS We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. CONCLUSIONS Males of the ant C. obscurior have a well-developed immune system that raises a strong immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without compromising their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus reveals a novel social immunity mechanism how social insect workers protect the colony against disease risk.
Collapse
Affiliation(s)
- Sina Metzler
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Jessica Kirchner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
29
|
Zhang L, Yang T, Su X, Zhang X, Zhou X. Debilitation of Galleria mellonella hemocytes using CytCo a cytolytic-like protein derived from the entomopathogen Conidiobolus obscurus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105418. [PMID: 37247995 DOI: 10.1016/j.pestbp.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Cytolytic (Cyt)-like genes are present in both pathogenic bacteria and fungi. Bacterial Cyt proteins can destroy insect midgut epithelial cells after ingestion by hosts and some of them have been developed as biopesticides; however, few studies have investigated their functions in fungal pathogens. This study investigated the effects of a Cyt-like protein (CytCo) derived from Conidiobolus obscurus (Entomophthoromycotina) on the hemocytes of the greater wax moth Galleria mellonella larvae. The results showed a significant decline in hemocyte viability after treatment with CytCo in vivo or in vitro. The hemocyte density in the hemolymph was reduced by 65.2% and 50.2% after 12 h in vivo and 6 h in vitro treatments, respectively. Apoptosis/necrosis tests using fluorescence microscopy demonstrated that CytCo-treated hemocytes displayed apoptosis, and many of them also showed necrosis after 6 h in vitro treatment. Based on transcriptome analysis, several genes involved in the programmed cell death signaling pathway were upregulated in the CytCo-treated hemocytes. Meanwhile, the differentially expressed genes related to energy production, signal transduction, transcription regulation, and melanization were upregulated, demonstrating activated immune responses; those putatively related to hemocyte adhesion were downregulated, possibly in response to the reduction of hemocytes in hemolymph. In conclusion, CytCo as a virulence factor, could irreversibly incapacitate host hemocytes, playing an important role in debilitating insect immunity. This novel insecticidal protein holds a potential to develop biopesticide for controlling agroforestry pests.
Collapse
Affiliation(s)
- Lvhao Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Tian Yang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiu Su
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xinqi Zhang
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiang Zhou
- State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
30
|
Wang ZL, Wang YD, Cheng YQ, Ye ZH, Liu GF, Yu XP. Characterization and transcriptomic analysis of a native fungal pathogen against the rice pest Nilaparvata lugens. Front Microbiol 2023; 14:1162113. [PMID: 37275152 PMCID: PMC10232905 DOI: 10.3389/fmicb.2023.1162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Given the threats posed by insecticide resistance to its control, eco-friendly strategies based on microbial pathogens emerged as a promising biocontrol alternative. In the present study, we isolated a native fungal pathogen against BPH from infected BPH cadavers and preliminarily identified as a strain of Aspergillus fumigatus based on morphological and molecular methods. Laboratory bioassay revealed that this fungal strain was highly virulent to BPH both at nymphal and adult stages, with the median lethal times (LT50) of 7.5 and 5.8 days under high conidial concentration of 1 × 109 conidia mL-1. A genome-wide view of gene expressions in BPH against fungal attack was analyzed by transcriptomic sequencing and consequently a large number of differentially expressed genes that mainly involved in host immune defense and cell detoxification were found. RNAi-mediated knockdown of an upregulated gene encoding a serine protease (NlSPN) could cause a significant decrease in BPH survival. Combination of dsRNA injection and fungal infection showed an additive effect on BPH mortality, which provided clues to develop new pest management strategies against BPH.
Collapse
|
31
|
Sogari G, Amato M, Palmieri R, Hadj Saadoun J, Formici G, Verneau F, Mancini S. The future is crawling: Evaluating the potential of insects for food and feed security. Curr Res Food Sci 2023; 6:100504. [PMID: 37377490 PMCID: PMC10290996 DOI: 10.1016/j.crfs.2023.100504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/29/2023] Open
Abstract
Current estimations showed that the number of people affected by hunger doubled in the last two years, reaching 9.8% of the global population. According to FAO, in order to satisfy the demand for food in the next few years, it will be necessary to double food production. Moreover, the call for a change in dietary patterns has been raised, showing how the food sector is responsible of 1/3 of climate change where meat-based diets or overconsumption of meat play an important role in the negative environmental impact. Consequently, there is a growing concern in how to achieve the goal of increasing food productions without exploiting environmental resources and to explore the production and use of alternative resources, such as insects. Insects are gaining interests both as food and feed not only to reduce the environmental costs in feed production for common livestock, but also to reduce farmers' dependence on traditional protein sources. In this work we aimed to provide an overview of the state-of-the-art upon insect studies, highlighting the most important results obtained from both an industrial and market perspective. The legislative framework concerning edible insects as food and feed is also analyzed, with the final purpose to highlight recent reforms, relevant case-law as well as unsolved regulatory challenges. From a normative perspective, regulatory efforts are still required to fully take advantage of the potentialities of insects-industry. From a consumer point of view, consumers' willingness to pay a premium is going to be a key issue for economic sustainability of the insect farming chain. To meet the food and feed security challenges, insects will have to be considered all-around, including applications in the food, feed, and other sectors. We believe that this review is an important contribution to the field of food science and will be of interest to researchers, food industry professionals, and policymakers in order to prioritize research questions and help communicate scientific knowledge to a broader audience.
Collapse
Affiliation(s)
- Giovanni Sogari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/a, 43124, Parma, Italy
| | - Mario Amato
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Rossella Palmieri
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Jasmine Hadj Saadoun
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/a, 43124, Parma, Italy
| | - Giulia Formici
- Department of Italian and Supranational Public Law, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Fabio Verneau
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
32
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
33
|
Buckingham LJ, Bruns EL, Ashby B. The evolution of age-specific resistance to infectious disease. Proc Biol Sci 2023; 290:20222000. [PMID: 36695037 PMCID: PMC9874267 DOI: 10.1098/rspb.2022.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Innate, infection-preventing resistance often varies between host life stages. Juveniles are more resistant than adults in some species, whereas the opposite pattern is true in others. This variation cannot always be explained by prior exposure or physiological constraints and so it has been hypothesized that trade-offs with other life-history traits may be involved. However, little is known about how trade-offs between various life-history traits and resistance at different life stages affect the evolution of age-specific resistance. Here, we use a mathematical model to explore how trade-offs with natural mortality, reproduction and maturation combine to affect the evolution of resistance at different life stages. Our results show that certain combinations of trade-offs have substantial effects on whether adults or juveniles are more resistant, with trade-offs between juvenile resistance and adult reproduction inherently more costly than trade-offs involving maturation or mortality (all else being equal), resulting in consistent evolution of lower resistance at the juvenile stage even when infection causes a lifelong fecundity reduction. Our model demonstrates how the differences between patterns of age-structured resistance seen in nature may be explained by variation in the trade-offs involved and our results suggest conditions under which trade-offs tend to select for lower resistance in juveniles than adults.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical Sciences, University of Bath, Bath, UK,Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily L. Bruns
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK,Milner Centre for Evolution, University of Bath, Bath, UK,Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
34
|
Li X, Zhang B, Zou J, Li Q, Liu J, Cai S, Akutse KS, You M, Lin S. Immune Responses and Transcriptomic Analysis of Nilaparvata lugens against Metarhizium anisopliae YTTR Mediated by Rice Ragged Stunt Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:345. [PMID: 36679058 PMCID: PMC9865581 DOI: 10.3390/plants12020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae YTTR could induce the expression changes of immune-related genes. However, most of the immune genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms -related genes' responses. In addition, the presence of RRSV could render the interplay between BPH and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune response mechanisms of RRSV-mediated BPH to M. anisopliae infection.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jiaxing Zou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Qianqian Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jianli Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Shouping Cai
- Fujian Key Laboratory of Forest Cultivation and Forest Products Processing and Utilization, Fujian Academy of Forestry, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
35
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
36
|
Burciaga RA, Ruiz-Guzmán G, Lanz-Mendoza H, Krams I, Contreras-Garduño J. The honey bees immune memory. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104528. [PMID: 36067906 DOI: 10.1016/j.dci.2022.104528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates' immune priming or innate immune memory is an analogous response to the vertebrates' adaptive memory. We investigated if honey bees have immune memory. We compared survival and immune response between bees that were: 1) manipulated (Naïve), 2) challenged twice with the same pathogen Escherichia coli (Memory), 3) challenged twice with different pathogens (Staphylococcus aureus versus E. coli, Micrococcus lysodeikticus versus E. coli), or 4) with PBS (the diluent of bacteria) versus E. coli (heterologous challenge; Control). Results indicate better survival in the Memory than the Control group, and the Memory group showed a similar survival than Naïve insects. The Memory group had higher lytic activity but lower prophenoloxidase, phenoloxidase activity, and hemocyte count than the Control and Naïve groups. No differences were found in relative expression of defensin-1. This first demonstration of immune memory opens the questions about its molecular mechanisms and whether, immune memory could be used against natural parasites that affect honey bees, hence, if they could be "vaccinated" against some natural parasites.
Collapse
Affiliation(s)
- Rodrigo Aarón Burciaga
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | - Gloria Ruiz-Guzmán
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils, Latvia; Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
| | - Jorge Contreras-Garduño
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
37
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
38
|
Sänger PA, Wagner S, Liebler-Tenorio EM, Fuchs TM. Dissecting the invasion of Galleria mellonella by Yersinia enterocolitica reveals metabolic adaptations and a role of a phage lysis cassette in insect killing. PLoS Pathog 2022; 18:e1010991. [PMID: 36399504 PMCID: PMC9718411 DOI: 10.1371/journal.ppat.1010991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Yersinia enterocolitica strain W22703 is characterized by its toxicity towards invertebrates that requires the insecticidal toxin complex (Tc) proteins encoded by the pathogenicity island Tc-PAIYe. Molecular and pathophysiological details of insect larvae infection and killing by this pathogen, however, have not been dissected. Here, we applied oral infection of Galleria mellonella (Greater wax moth) larvae to study the colonisation, proliferation, tissue invasion, and killing activity of W22703. We demonstrated that this strain is strongly toxic towards the larvae, in which they proliferate by more than three orders of magnitude within six days post infection. Deletion mutants of the genes tcaA and tccC were atoxic for the insect. W22703 ΔtccC, in contrast to W22703 ΔtcaA, initially proliferated before being eliminated from the host, thus confirming TcaA as membrane-binding Tc subunit and TccC as cell toxin. Time course experiments revealed a Tc-dependent infection process starting with midgut colonisation that is followed by invasion of the hemolymph where the pathogen elicits morphological changes of hemocytes and strongly proliferates. The in vivo transcriptome of strain W22703 shows that the pathogen undergoes a drastic reprogramming of central cell functions and gains access to numerous carbohydrate and amino acid resources within the insect. Strikingly, a mutant lacking a phage-related holin/endolysin (HE) cassette, which is located within Tc-PAIYe, resembled the phenotypes of W22703 ΔtcaA, suggesting that this dual lysis cassette may be an example of a phage-related function that has been adapted for the release of a bacterial toxin.
Collapse
Affiliation(s)
| | - Stefanie Wagner
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | | | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
- * E-mail:
| |
Collapse
|
39
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
40
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
41
|
Yoon SA, Harrison JG, Smilanich AM, Forister ML. Experimental removal of extracellular egg‐associated microbes has long‐lasting effects for larval performance. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Su’ad A. Yoon
- Okinawa Institute of Science and Technology Okinawa Japan
| | | | - Angela M. Smilanich
- University of Nevada Reno, Department of Biology, Program of Ecology, Evolution, and Conservation Biology Reno NV
| | - Matthew L. Forister
- University of Nevada Reno, Department of Biology, Program of Ecology, Evolution, and Conservation Biology Reno NV
| |
Collapse
|
42
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
43
|
Burkholderia pseudomallei JW270 Is Lethal in the Madagascar Hissing Cockroach Infection Model and Can Be Utilized at Biosafety Level 2 to Identify Putative Virulence Factors. Infect Immun 2022; 90:e0015922. [PMID: 35862734 PMCID: PMC9387215 DOI: 10.1128/iai.00159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is classified by the CDC as a tier 1 select agent, and work involving it must be performed in a biosafety level 3 (BSL-3) laboratory. Three BSL-2 surrogate strains derived from B. pseudomallei 1026b, a virulent clinical isolate, have been removed from the CDC select agent list. These strains, Bp82, B0011, and JW270, are highly attenuated in rodent models of melioidosis and cannot be utilized to identify virulence determinants because of their high 50% lethal dose (LD50). We previously demonstrated that the Madagascar hissing cockroach (MHC) is a tractable surrogate host to study the innate immune response against Burkholderia. In this study, we found that JW270 maintains its virulence in MHCs. This surprising result indicates that it may be possible to identify potential virulence genes in JW270 by using MHCs at BSL-2. We tested this hypothesis by constructing JW270 mutations in genes that are required (hcp1) or dispensable (hcp2) for B. pseudomallei virulence in rodents. JW270 Δhcp1 was avirulent in MHCs and JW270 Δhcp2 was virulent, suggesting that MHCs can be used at BSL-2 for the discovery of important virulence factors. JW270 ΔBPSS2185, a strain harboring a mutation in a type IV pilin locus (TFP8) required for full virulence in BALB/c mice, was also found to be attenuated in MHCs. Finally, we demonstrate that the hmqA-G locus, which encodes the production of a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines, is important for JW270 virulence in MHCs and may represent a novel virulence determinant.
Collapse
|
44
|
Polunin KE, Fedotkina OS, Polunina IA, Buryak AK. Optimizing the Chromatographic Separation of Antibacterial Peptides of Galleria mellonella. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
46
|
Korša A, Lo LK, Gandhi S, Bang C, Kurtz J. Oral Immune Priming Treatment Alters Microbiome Composition in the Red Flour Beetle Tribolium castaneum. Front Microbiol 2022; 13:793143. [PMID: 35495655 PMCID: PMC9043903 DOI: 10.3389/fmicb.2022.793143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
It is now well-established that the microbiome is relevant for many of an organism’s properties and that its composition reacts dynamically to various conditions. The microbiome interacts with host immunity and can play important roles in the defenses against pathogens. In invertebrates, immune priming, that is, improved survival upon secondary exposure to a previously encountered pathogen, can be dependent upon the presence of the gut microbiome. However, it is currently unknown whether the microbiome changes upon priming treatment. We here addressed this question in a well-established model for immune priming, the red flour beetle Tribolium castaneum exposed to the entomopathogenic bacterium Bacillus thuringiensis (Bt). After priming treatments, the microbiota composition of beetle larvae was assessed by deep sequencing of the V1-V2 region of the bacterial 16S rRNA gene. We compared the effect of two established routes of priming treatments in this system: injection priming with heat-killed Bt and oral priming via ingestion of filtered sterilized bacterial spore culture supernatants. For oral priming, we used several strains of Bt known to vary in their ability to induce priming. Our study revealed changes in microbiome composition following the oral priming treatment with two different strains of Bt, only one of which (Bt tenebrionis, Btt) is known to lead to improved survival. In contrast, injection priming treatment with the same bacterial strain did not result in microbiome changes. Combined with the previous results indicating that oral priming with Btt depends on the larval microbiome, this suggests that certain members of the microbiome could be involved in forming an oral priming response in the red flour beetle.
Collapse
Affiliation(s)
- Ana Korša
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Lai Ka Lo
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Shrey Gandhi
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Institute of Immunology, University of Münster, Münster, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
48
|
Harish E, Osherov N. Fungal Priming: Prepare or Perish. J Fungi (Basel) 2022; 8:jof8050448. [PMID: 35628704 PMCID: PMC9145559 DOI: 10.3390/jof8050448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/06/2023] Open
Abstract
Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.
Collapse
|
49
|
Hadj Saadoun J, Sogari G, Bernini V, Camorali C, Rossi F, Neviani E, Lazzi C. A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Ali Mohammadie Kojour M, Baliarsingh S, Jang HA, Yun K, Park KB, Lee JE, Han YS, Patnaik BB, Jo YH. Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104284. [PMID: 34619174 DOI: 10.1016/j.dci.2021.104284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Keunho Yun
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jong Eun Lee
- Department of Biological Science and Biotechnology, Andong National University, Andong, 36729, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India.
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|