1
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2024:S1673-8527(24)00284-4. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
2
|
Xue P, Sánchez-León E, Hu G, Lee CWJ, Black B, Brisland A, Li H, Jung WH, Kronstad JW. The interplay between electron transport chain function and iron regulatory factors influences melanin formation in Cryptococcus neoformans. mSphere 2024; 9:e0025024. [PMID: 38687055 PMCID: PMC11237718 DOI: 10.1128/msphere.00250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Mitochondrial functions are critical for the ability of the fungal pathogen Cryptococcus neoformans to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor. This inhibition was partially overcome by defects in Cir1 or HapX, two transcription factors that regulate iron acquisition and use. In this regard, loss of Cir1 derepresses the expression of laccase genes as a potential mechanism to restore melanin, while HapX may condition melanin formation by controlling oxidative stress. We hypothesize that ETC dysfunction alters redox homeostasis to influence melanin formation. Consistent with this idea, inhibition of growth by hydrogen peroxide was exacerbated in the presence of the melanin substrate L-DOPA. In addition, loss of the mitochondrial chaperone Mrj1, which influences the activity of ETC complex III and reduces ROS accumulation, also partially overcame antimycin A inhibition of melanin. The phenotypic impact of mitochondrial dysfunction was consistent with RNA-Seq analyses of WT cells treated with antimycin A or L-DOPA, or cells lacking Cir1 that revealed influences on transcripts encoding mitochondrial functions (e.g., ETC components and proteins for Fe-S cluster assembly). Overall, these findings reveal mitochondria-nuclear communication via ROS and iron regulators to control virulence factor production in C. neoformans.IMPORTANCEThere is a growing appreciation of the importance of mitochondrial functions and iron homeostasis in the ability of fungal pathogens to sense the vertebrate host environment and cause disease. Many mitochondrial functions such as heme and iron-sulfur cluster biosynthesis, and the electron transport chain (ETC), are dependent on iron. Connections between factors that regulate iron homeostasis and mitochondrial activities are known in model yeasts and are emerging for fungal pathogens. In this study, we identified connections between iron regulatory transcription factors (e.g., Cir1 and HapX) and the activity of complex III of the ETC that influence the formation of melanin, a key virulence factor in the pathogenic fungus Cryptococcus neoformans. This fungus causes meningoencephalitis in immunocompromised people and is a major threat to the HIV/AIDS population. Thus, understanding how mitochondrial functions influence virulence may support new therapeutic approaches to combat diseases caused by C. neoformans and other fungi.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher W J Lee
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Braydon Black
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Brisland
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haohua Li
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Edrich ESM, Duvenage L, Gourlay CW. Alternative Oxidase - Aid or obstacle to combat the rise of fungal pathogens? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149031. [PMID: 38195037 DOI: 10.1016/j.bbabio.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Fungal pathogens present a growing threat to both humans and global health security alike. Increasing evidence of antifungal resistance in fungal populations that infect both humans and plant species has increased reliance on combination therapies and shown the need for new antifungal therapeutic targets to be investigated. Here, we review the roles of mitochondria and fungal respiration in pathogenesis and discuss the role of the Alternative Oxidase enzyme (Aox) in both human fungal pathogens and phytopathogens. Increasing evidence exists for Aox within mechanisms that underpin fungal virulence. Aox also plays important roles in adaptability that may prove useful within dual targeted fungal-specific therapeutic approaches. As improved fungal specific mitochondrial and Aox inhibitors are under development we may see this as an emerging target for future approaches to tackling the growing challenge of fungal infection.
Collapse
Affiliation(s)
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK.
| |
Collapse
|
4
|
Xue P, Sánchez-León E, Hu G, Lee CWJ, Black B, Brisland A, Li H, Jung WH, Kronstad JW. The interplay between electron transport chain function and iron regulatory factors influences melanin formation in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580540. [PMID: 38405941 PMCID: PMC10888943 DOI: 10.1101/2024.02.15.580540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial functions are critical for the ability of the fungal pathogen Cryptococcus neoformans to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor. This inhibition was partially blocked upon loss of Cir1 or HapX, two transcription factors that regulate iron acquisition and use. In this regard, loss of Cir1 derepresses the expression of laccase genes as a potential mechanism to restore melanin, while HapX may condition melanin formation by controlling oxidative stress. We hypothesize that ETC dysfunction alters redox homeostasis to influence melanin formation. Consistent with this idea, inhibition of growth by hydrogen peroxide was exacerbated in the presence of the melanin substrate L-DOPA. Additionally, loss of the mitochondrial chaperone Mrj1, which influences the activity of ETC complex III and reduces ROS accumulation, also partially blocked antimycin A inhibition of melanin. The phenotypic impact of mitochondrial dysfunction was consistent with RNA-Seq analyses of WT cells treated with antimycin A or L-DOPA, or cells lacking Cir1 that revealed influences on transcripts encoding mitochondrial functions (e.g., ETC components and proteins for Fe-S cluster assembly). Overall, these findings reveal mitochondria-nuclear communication via ROS and iron regulators to control virulence factor production in C. neoformans.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Present address: Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher WJ Lee
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Braydon Black
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Brisland
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haohua Li
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Castro-Lopez N, Wormley FL. Models for Inducing Experimental Cryptococcosis in Mice. Methods Mol Biol 2024; 2775:29-46. [PMID: 38758309 DOI: 10.1007/978-1-0716-3722-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the predominant etiological agents of cryptococcosis, a particularly problematic disease in immunocompromised individuals. The increased clinical use of immunosuppressive drugs, the inherent ability of Cryptococcus species to suppress and evade host immune responses, and the emergence of drug-resistant yeast support the need for model systems that facilitate the design of novel immunotherapies and antifungals to combat disease progression. The mouse model of cryptococcosis is a widely used system to study Cryptococcus pathogenesis and the efficacy of antifungal drugs in vivo. In this chapter, we describe three commonly used strategies to establish cryptococcosis in mice: intranasal, intratracheal, and intravenous inoculations. Also, we discuss the methodology for delivering drugs to mice via intraperitoneal injection.
Collapse
Affiliation(s)
| | - Floyd L Wormley
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
7
|
Juxtaposing Caenorhabditis elegans-Pathogenic Mould Model with Other Models; How Reliable Is This Nematode Model? A Mini Review. Curr Microbiol 2023; 80:105. [PMID: 36790616 DOI: 10.1007/s00284-023-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.
Collapse
|
8
|
Bénit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate Dehydrogenase, Succinate, and Superoxides: A Genetic, Epigenetic, Metabolic, Environmental Explosive Crossroad. Biomedicines 2022; 10:1788. [PMID: 35892689 PMCID: PMC9394281 DOI: 10.3390/biomedicines10081788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Research focused on succinate dehydrogenase (SDH) and its substrate, succinate, culminated in the 1950s accompanying the rapid development of research dedicated to bioenergetics and intermediary metabolism. This allowed researchers to uncover the implication of SDH in both the mitochondrial respiratory chain and the Krebs cycle. Nowadays, this theme is experiencing a real revival following the discovery of the role of SDH and succinate in a subset of tumors and cancers in humans. The aim of this review is to enlighten the many questions yet unanswered, ranging from fundamental to clinically oriented aspects, up to the danger of the current use of SDH as a target for a subclass of pesticides.
Collapse
Affiliation(s)
- Paule Bénit
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Goncalves
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Riyad El Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Malgorzata Rak
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Favier
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Anne-Paule Gimenez-Roqueplo
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France;
| | - Pierre Rustin
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| |
Collapse
|
9
|
Black B, Lee C, Horianopoulos LC, Jung WH, Kronstad JW. Respiring to infect: Emerging links between mitochondria, the electron transport chain, and fungal pathogenesis. PLoS Pathog 2021; 17:e1009661. [PMID: 34237096 PMCID: PMC8266039 DOI: 10.1371/journal.ppat.1009661] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Braydon Black
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Christopher Lee
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Linda C. Horianopoulos
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|